Refine Your Search

Topic

Author

Search Results

Technical Paper

A Graphical Representation of Road Profile Characteristics

2004-03-08
2004-01-0769
Load data representing severe customer usage is required during the chassis development process. One area of current research is the use of road profiles for predicting chassis loads. The most direct method of predicting these loads is to run dynamic simulations of the vehicle using numerous road profiles as the excitation. This onerous task may be avoided, and a greatly reduced number of simulations would be required, if roads having similar characteristics can be grouped. Currently, road profiles are characterized by their spectral content. It has been noted by several researches, however, that road profiles are generally nonstationary signals that contain significant transient events and are not well described in the spectral domain. The objective of this work, then, is to develop a method by which the characteristics of the road can be captured by describing these constitutive transient events.
Technical Paper

A Model for On-Line Monitoring of In-Cylinder Residual Gas Fraction (RGF) and Mass Flowrate in Gasoline Engines

2006-04-03
2006-01-0656
In a gasoline engine, the unswept in-cylinder residual gas and introduction of external EGR is one of the important means of controlling engine raw NOx emissions and improving part load fuel economy via reduction of pumping losses. Since the trapped in-cylinder Residual Gas Fraction (RGF, comprised of both internal, and external) significantly affects the combustion process, on-line diagnosis and monitoring of in-cylinder RGF is very important to the understanding of the in-cylinder dilution condition. This is critical during the combustion system development testing and calibration processes. However, on-line measurement of in-cylinder RGF is difficult and requires an expensive exhaust gas analyzer, making it impractical for every application. Other existing methods, based on measured intake and exhaust pressures (steady state or dynamic traces) to calculate gas mass flowrate across the cylinder ports, provide a fast and economical solution to this problem.
Technical Paper

A Multiple Order Conformability Model for Uniform Cross-Section Piston Rings

2005-04-11
2005-01-1643
This paper examines the conformability of elastic piston rings to a distorted cylinder bore. Several bounds are available in the literature to help estimate the maximum allowable Fourier coefficient in a Fourier expansion of bore distortion: the analytically derived bounds in [7] and [8], and the semi-empirically derived bounds discussed in [9]. The underlying assumptions for each set of analytic bounds are examined and a multiple order algorithm is derived. The proposed algorithm takes account of multiple orders of distortion at once. It is tested with finite element (FE) data and compared to the classical bound approach. The results indicate that the bounds in [7] are compatible with linear elasticity theory (LET), whereas the bounds in [8] are not. Furthermore, numerical evidence indicates that the present multiple order algorithm can predict seal breaches more accurately than either of the other analytic bounds.
Technical Paper

An Advanced Diesel Fuels Test Program

2001-03-05
2001-01-0150
This paper reports on DaimlerChrysler's participation in the Ad Hoc Diesel Fuels Test Program. This program was initiated by the U.S. Department of Energy and included major U.S. auto makers, major U.S. oil companies, and the Department of Energy. The purpose of this program was to identify diesel fuels and fuel properties that could facilitate the successful use of compression ignition engines in passenger cars and light-duty trucks in the United States at Tier 2 and LEV II tailpipe emissions standards. This portion of the program focused on minimizing engine-out particulates and NOx by using selected fuels, (not a matrix of fuel properties,) in steady state dynamometer tests on a modern, direct injection, common rail diesel engine.
Technical Paper

An Experimental Study on the Effect of Intake Primary Runner Blockages on Combustion and Emissions in SI Engines under Part-Load Conditions

2004-10-25
2004-01-2973
Charge motion is known to accelerate and stabilize combustion through its influence on turbulence intensity and flame propagation. The present work investigates the effect of charge motion generated by intake runner blockages on combustion characteristics and emissions under part-load conditions in SI engines. Firing experiments have been conducted on a DaimlerChrysler (DC) 2.4L 4-valve I4 engine, with spark range extending around the Maximum Brake Torque (MBT) timing. Three blockages with 20% open area are compared to the fully open baseline case under two operating conditions: 2.41 bar brake mean effective pressure (bmep) at 1600 rpm, and 0.78 bar bmep at 1200 rpm. The blocked areas are shaped to create different levels of swirl, tumble, and cross-tumble. Crank-angle resolved pressures have been acquired, including cylinders 1 and 4, intake runners 1 and 4 upstream and downstream of the blockage, and exhaust runners 1 and 4.
Technical Paper

Beam Element Leaf Spring Suspension Model Development and Assessment Using Road Load Data

2006-04-03
2006-01-0994
Knowledge of the loads experienced by a leaf spring suspension is required for the optimal design of the suspension components and frame. The most common method of representing leaf springs is the SAE 3 link model, which does not give good results in the lateral direction. In this paper, a beam element leaf spring model is developed. This model is validated using data obtained from laboratory tests done on leaf spring assemblies. The model is then subjected to actual road load data measured on the Proving Ground. Lastly, results from the beam element model are presented and compared with results obtained from proving ground tests. Overall, the beam element model gives good results in all directions except in situations where it is subjected to high fore/aft acceleration and high reverse braking events.
Technical Paper

Body/Chassis Dynamic Response Under Experimental Modal Test

2005-05-16
2005-01-2463
Mode management is an essential part of the design process for NVH performance. System resonances must be sufficiently separated to minimize interaction from source inputs and each other [1]. Such resonances are typically determined through experimental modal testing conducted in a lab environment under controlled and repeatable conditions. Global vehicle and suspension system response demonstrate soft nonlinear behavior, however. Their resonant frequencies may thus decrease under on-road input not reproducible in a lab environment. Subsequently, mode management charts derived from lab testing may not be representative of the vehicle's on-road dynamic response. This paper presents modal model determination methodologies, and examines suspension system and vehicle global dynamic response under lab modal test and operating conditions. Vehicle suspension modes measured under static and dynamic (rolling) conditions will be compared.
Technical Paper

CAE Fatigue Prediction of Fuel Tank Straps using Proving Ground Loads

2005-04-11
2005-01-1405
The durability of fuel tank straps is essential for vehicle safety. Extensive physical tests are conducted to verify designs for durability. Due to the complexity of the loads and the fuel-to-tank interaction, computer-aided-engineering (CAE) simulation has had limited application in this area. This paper presents a CAE method for fuel tank strap durability prediction. It discusses the analytical loads, modeling of fuel-to-tank interaction, dynamic analysis methods, and fatigue analysis methods. Analysis results are compared to physical test results. This method can be used in either a fuel-tank-system model or a full vehicle model. It can give directional design guidance for fuel tank strap durability in the early stages of product development to reduce vehicle development costs.
Technical Paper

Cam-phasing Optimization Using Artificial Neural Networks as Surrogate Models-Fuel Consumption and NOx Emissions

2006-04-03
2006-01-1512
Cam-phasing is increasingly considered as a feasible Variable Valve Timing (VVT) technology for production engines. Additional independent control variables in a dual-independent VVT engine increase the complexity of the system, and achieving its full benefit depends critically on devising an optimum control strategy. A traditional approach relying on hardware experiments to generate set-point maps for all independent control variables leads to an exponential increase in the number of required tests and prohibitive cost. Instead, this work formulates the task of defining actuator set-points as an optimization problem. In our previous study, an optimization framework was developed and demonstrated with the objective of maximizing torque at full load. This study extends the technique and uses the optimization framework to minimize fuel consumption of a VVT engine at part load.
Technical Paper

Chassis Dynamometer Simulation of Tire Impact Response

2001-04-30
2001-01-1481
One of the major NVH concerns for automobile manufacturers is the response of a vehicle to the impact of the tire as it encounters a road discontinuity or bump. This paper describes methods for analyzing the impact response of a vehicle to such events. The test vehicle is driven on a dynamometer, on which a bump simulating cleat is mounted. The time histories of the cleat impact response of the vehicle can be classified as a transient and a repeated signal, which should be processed in a special way. This paper describes the related signal processing issues, which include converting the time data into a continous spectrum, determination of the correct scaling factor for the analyzed spectrum, and smoothing out harmonics and fluctuations in the signal. This procedure yields a smooth frequency spectrum with a correctly scaled amplitude, in which the frequency contents can be easily identified.
Technical Paper

Development of a Nonlinear Shock Absorber Model for Low-Frequency NVH Applications

2003-03-03
2003-01-0860
This paper dis cusses the development of a nonlinear shock absorber model for low-frequency CAE-NVH applications of body-on-frame vehicles. In CAE simulations, the shock absorber is represented by a linear damper model and is found to be inadequate in capturing the dynamics of shock absorbers. In particular, this model neither captures nonlinear behavior of shock absorbers nor distinguishes between compression and rebound motions of the suspension. Such an inadequacy limits the utility of CAE simulations in understanding the influence of shock absorbers on shake performance of body-on-frame vehicles in the low frequency range where shock absorbers play a significant role. Given this background, it becomes imperative to develop a shock absorber model that is not only sophisticated to describe shock absorber dynamics adequately but also simple enough to implement in full-vehicle simulations. This investigation addresses just that.
Technical Paper

Development of an Engine Test Cell for Rapid Evaluation of Advanced Powertrain Technologies using Model-Controlled Dynamometers

2006-04-03
2006-01-1409
Current engine development processes typically involve extensive steady-state and simple transient testing in order to characterize the engine's fuel consumption, emissions, and performance based on several controllable inputs such as throttle, spark advance, and EGR. Steady-state and simple transient testing using idealistic load conditions alone, however, is no longer sufficient to meet powertrain development schedule requirements. Mapping and calibration of an engine under transient operation has become critically important. And, independent engine development utilizing accelerated techniques is becoming more attractive. In order to thoroughly calibrate new engines in accelerated fashion and under realistic transient conditions, more advanced testing is necessary.
Technical Paper

Development of the Direct Nonmethane Hydrocarbon Measurement Technique for Vehicle Testing

2003-03-03
2003-01-0390
The Automotive Industry/Government Emissions Research CRADA (AIGER) has been working to develop a new methodology for the direct determination of nonmethane hydrocarbons (DNMHC) in vehicle testing. This new measurement technique avoids the need for subtraction of a separately determined methane value from the total hydrocarbon measurement as is presently required by the Code of Federal Regulations. This paper will cover the historical aspects of the development program, which was initiated in 1993 and concluded in 2002. A fast, gas chromatographic (GC) column technology was selected and developed for the measurement of the nonmethane hydrocarbons directly, without any interference or correction being caused by the co-presence of sample methane. This new methodology chromatographically separates the methane from the nonmethane hydrocarbons, and then measures both the methane and the backflushed, total nonmethane hydrocarbons using standard flame ionization detection (FID).
Technical Paper

Effect of Cross Flow on Performance of a PEM Fuel Cell

2007-04-16
2007-01-0697
A serpentine flow channel is one of the most common and practical channel layouts for a PEM fuel cell since it ensures the removal of water produced in a cell. While the reactant flows along the flow channel, it can also leak or cross to neighboring channels via the porous gas diffusion layer due to a high pressure gradient. Such a cross flow leads to effective water removal in a gas diffusion layer thus enlarging the active area for reaction although this cross flow has largely been ignored in previous studies. In this study, neutron radiography is applied to investigate the liquid water accumulation and its effect on the performance of a PEM fuel cell. Liquid water tends to accumulate in the gas diffusion layer adjacent to the flow channel area while the liquid water formed in the gas diffusion layer next to the channel land area seems to be effectively removed by the cross leakage flow between the adjacent flow channels.
Technical Paper

Effect of Tire Stiffness on Vehicle Loads

2005-04-11
2005-01-0825
Tire stiffness can have a significant effect on the spindle and component loads. While its’ effect on the component loads may show a different trend. This paper deals with data acquisition loads using Wheel Force Transducer (WFT) with 17 inch, 18 inch and 20 inch tires and shows how the spindle loads changed for different tire. These loads are applied on the analytical suspension model to generate both component and the body attachment loads. Some of the measured channels are correlated for all the wheel sizes for multiple events to ensure the confidence in the model. It is found that even if spindle loads are increased with tire stiffness, the component loads do not necessarily show a similar trend. This paper studies why higher spindle forces do not always give higher component loads and what are the possible alternatives one may look into to shortlist or select one set of loads over the other.
Technical Paper

Evaluation of the Bag Mini-Diluter and Direct Vehicle Exhaust Volume System for Low Level Emissions Measurement

2000-03-06
2000-01-0793
With the adoption of the California Low-Emission Vehicle Regulations and the associated lower emission standards such as LEV (Low-Emission Vehicle in 1990), ULEV (Ultra-Low-Emission Vehicle), and LEV II (1998 with SULEV-Super Ultra Low Emission Vehicle), concerns were raised by emissions researchers over the accuracy and reliability of collecting and analyzing emissions measurements at such low levels. The primary concerns were water condensation, optimizing dilution ratios, and elimination of background contamination. These concerns prompted a multi-year research program looking at several new sampling techniques. This paper will describe the cooperative research conducted into one of these new technologies, namely the Bag Mini-Diluter (BMD) and Direct Vehicle Exhaust (DVE) Volume system.
Technical Paper

Experimental Modal Methodologies for Quantification of Body/Chassis Response to Brake Torque Variation

2007-05-15
2007-01-2343
Brake torque variation is a source of objectionable NVH body/chassis response. Such input commonly results from brake disk thickness variation. The NVH dynamic characteristics of a vehicle can be assessed and quantified through experimental modal testing for determination of mode resonance frequency, damping property, and shape. Standard full vehicle modal testing typically utilizes a random input excitation into the vehicle frame or underbody structure. An alternative methodology was sought to quantify and predict body/chassis sensitivity to brake torque variation. This paper presents a review of experimental modal test methodologies investigated for the reproduction of vehicle response to brake torque variation in a static laboratory environment. Brake caliper adapter random and sine sweep excitation input as well as body sine sweep excitation in tandem with an intentionally locked brake will be detailed.
Technical Paper

Experimental and Modeling Evaluations of a Vacuum-Insulated Catalytic Converter

1999-10-25
1999-01-3678
Vehicle evaluations and model calculations were conducted on a vacuum-insulated catalytic converter (VICC). This converter uses vacuum and a eutectic PCM (phase-change material) to prolong the temperature cool-down time and hence, may keep the converter above catalyst light-off between starts. Tailpipe emissions from a 1992 Tier 0 5.2L van were evaluated after 3hr, 12hr, and 24hr soak periods. After a 12hr soak the HC emissions were reduced by about 55% over the baseline HC emissions; after a 24hr soak the device did not exhibit any benefit in light-off compared to a conventional converter. Cool-down characteristics of this VICC indicated that the catalyst mid-bed temperature was about 180°C after 24hrs. Model calculations of the temperature warm-up were conducted on a VICC converter. Different warm-up profiles within the converter were predicted depending on the initial temperature of the device.
Technical Paper

In Vehicle Exhaust Mount Load Measurement and Calculation

2006-04-03
2006-01-1258
Exhaust durability is an important measure of quality, which can be predicted using CAE with accurate mount loads. This paper proposes an innovative method to calculate these loads from measured mount accelerations. A Chrysler vehicle was instrumented with accelerometers at both ends of its four exhaust mounts. The vehicle was tested at various durability routes or events at DaimlerChrysler Proving Grounds. These measured accelerations were integrated to obtain their velocities and displacements. The differences in velocities and displacements at each mount were multiplied by its damping and stiffness rates to obtain the mount load. The calculation was conducted for all three translational directions and for all events. The calculated mount loads are shown within reasonable range. Along with CAE, it is suggested to explore this method for exhaust durability development.
Technical Paper

Injection Molded, Extruded-In-Color Film Fascia

2003-03-03
2003-01-1126
A new multi-layer co-extruded in-color Ionomer film is developed to provide an alternative decoration process to replace paint on Dodge Neon Fascias. The Ionomer film provides a high-gloss “class-A” surface in both non-metallic and metallic colors that match the car body paint finish. Using the Ionomer film to decorate fascias reduces cost; eliminates VOCs; increases manufacturing flexibility and improves performance (weatherability and durability). The molding process consists of thermoforming a film blank and injection molding Polypropylene or TPO behind the film. The paper will include the background, the benefits, the technology development objectives, the film materials development, tooling optimization, film fascia processing (co-extrusion; thermoforming and injection molding) and validation testing of the film.
X