Refine Your Search

Topic

Search Results

Journal Article

360° Surround View System with Parking Guidance

2014-04-01
2014-01-0157
In this paper, we present a real-time 360 degree surround system with parking aid feature, which is a very convenient parking and blind spot aid system. In the proposed system, there are four fisheye cameras mounted around a vehicle to cover the whole surrounding area. After correcting the distortion of four fisheye images and registering all images on a planar surface, a flexible stitching method was developed to smooth the seam of adjacent images away to generate a high-quality result. In the post-process step, a unique brightness balance algorithm was proposed to compensate the exposure difference as the images are not captured with the same exposure condition. In addition, a unique parking guidance feature is applied on the surround view scene by utilizing steering wheel angle information as well as vehicle speed information.
Technical Paper

A Non Traditional Solution for High Vibration Connection Systems

2014-04-01
2014-01-0221
As automotive and commercial vehicle OEM's continue their quest to reduce cost, product selection, quality, and reliability must be maintained. On-engine and wheel located connection systems create the greatest challenges due to the extreme levels of vibration. In the past, devices were fewer, and there where less direct connects in high vibration locations (Engine/ wheel sensors, electronic controllers, fuel injectors). Instead, small wire harnesses (“pigtails”) were commonly used. These pigtails can dampen the effect of the environment which includes mild to severe vibration by keeping the environmental effect away from the electrical connection contact point. Electrically connecting directly to the device creates new challenges in the connection system with the increased threat of fretting corrosion. Suppliers supporting OEM's are attempting to meet these direct connect requirements with lubrication, precious metal plating, and high contact force contacts.
Technical Paper

A Prognostic and Data Fusion Based Approach to Validating Automotive Electronics

2014-04-01
2014-01-0724
There is a continual growth of test and validation in high reliability product applications such as automotive, military and avionics. Principally this is driven by the increased use and complexity of electronic systems deployed in vehicles, in addition to end user reliability expectations. Higher reliability expectations consequently driving increased test durations. Furthermore product development cycles continue to reduce, resulting in less available time to perform accelerated life tests. The challenge for automotive electronic suppliers is performing life tests in a shorter period of time whilst reducing the overall associated costs of validation testing. In this paper, the application of prognostic and health monitoring techniques are examined and a novel approach to the validation and testing of automotive electronics proposed which it is suggested may be more cost effective and efficient than traditional testing.
Technical Paper

Adaptation of the Mean Shift Tracking Algorithm to Monochrome Vision Systems for Pedestrian Tracking Based on HoG-Features

2014-04-01
2014-01-0170
The mean shift tracking algorithm has become a standard in the field of visual object tracking, caused by its real time capability and robustness to object changes in pose, size, or illumination. The standard mean shift tracking approach is an iterative procedure that is based on kernel weighted color histograms for object modelling and the Bhattacharyyan coefficient as a similarity measure between target and candidate histogram model. The benefits of the approach could not been transferred to monochrome vision systems yet, because the loss of information from color to grey-scale histogram object models is too high and the system performance drops seriously. We propose a new framework that solves this problem by using histograms of HoG-features as object model and the SOAMST approach by Ning et al. for track estimation. Mean shift tracking requires a histogram for object modelling.
Technical Paper

Application of 48 Volt for Mild Hybrid Vehicles and High Power Loads

2014-04-01
2014-01-1790
During the evolution of Hybrid vehicles as well as electrical vehicles the need for an additional Voltage level was defined for the utilization of high power loads like electrical compressors, electrical heaters as well as power steering and electrical pumps. The main systems benefit is the generation of approximately 12 kW electrical power by a traditional belt driven Generator. This allows boost function for acceleration and recuperation for mild hybrid vehicles with the target to reduce up to 15% CO2 by keeping the traditional thermal based engines. Delphi has developed systems and components that meet the special 48 Volt related electrical requirements on arcing, hot plugging and corrosion. Our benefit is the long term expertise within the total system know how and the derived technical specification and needs.
Technical Paper

Concept of Virtual Engine Control Module for High Quality and Time Efficient Verification and Testing of Powertrain Engine Control Module

2015-04-14
2015-01-0170
Wide varieties of vehicle Engine Management Systems are designed by different Tier#1 suppliers to meet highly complex requirements with the help of electronics. Emerging technologies and features of Engine Management Systems require a number of strategies for reducing the overall timing for verification with high quality testing. Analysis and decoding of data especially for highly critical and complex such as gasoline direct injection (GDi) engine fuel delivery output, high pressure fuel pump (HPFP), spark control output and different varieties of engine position signals are time consuming. This paper introduces Virtual Engine Control Module (VECM) technology to solve the problem of decoding complex signals and high level verification. A proposed test bench setup consists of VECM, ECM, simulator and real actuator load with complete software flashed inside the ECM.
Journal Article

Control of a Combined SCR on Filter and Under-Floor SCR System for Low Emission Passenger Cars

2014-04-01
2014-01-1522
Similar to single-brick SCR architectures, the multi-brick SCR systems described in this paper require urea injection control software that meets the NOx conversion performance target while maintaining the tailpipe NH3 slip below a given threshold, under all driving conditions. The SCR architectures containing a close-coupled SCRoF and underfloor SCR are temperature-wise more favorable than the under-floor location and lead to significant improvement of the global NOx conversion, compared to a single-brick system. But in order to maximize the benefit of close-coupling, the urea injection control must maximize the NH3 stored in the SCRoF. The under-floor SCR catalyst can be used as an NH3 slip buffer, lowering the risk of NH3 slip at the tailpipe with some benefit on the global NOx conversion of the system. With this approach, the urea injection strategy has a limited control on the NH3 coverage of the under-floor SCR catalyst.
Technical Paper

Delphi's Heated Injector Technology: The Efficient Solution for Fast Ethanol Cold Starts and Reduced Emissions

2012-04-16
2012-01-0418
Most current flex-fuel vehicles are capable of operating on gasoline/ethanol blends from E0 to E85. The presence of gasoline in the fuel enables cold startability because some of its more volatile components can still vaporize at cold temperatures and produce an ignitable mixture. However when E100 is used, other means are required for cold starting because of ethanol's relatively low vapor pressure at low temperatures. A common technique is to employ an auxiliary gasoline fuel system for use only when temperatures are too low for the vehicle to start on E100 alone. But the added cost, complexity and maintenance of such systems have driven the search for a simpler approach. One such technique is to heat the fuel prior to injection. Fuel systems currently exist where heating occurs within the main conduit of the fuel rail. Another method is to heat the fuel within each fuel injector.
Technical Paper

Designed Experiment to Evaluate the Canning Strength of Various High Cell Density / Ultra Thin Wall Ceramic Monoliths

2001-09-24
2001-01-3663
High cell density (HCD) (≥ 600 cpsi) and /or ultra thin wall (UTW) (≤ 4 mil) extruded ceramic monolith substrates are being used in many new automotive catalyst applications because they offer (1) increased geometric surface area, (2) lower thermal mass, (3) increased open frontal area and (4) higher heat and mass transfer rates. Delphi has shown in previous papers how to use the effectiveness, NTU theory, to optimize the various benefits of these HCD / UTW catalysts. A primary disadvantage of these low solid fraction substrates is their reduced structural strength, as measured by a 3-D hydrostatic (isostatic) test. The weakest of these new substrates is only 10 to 20% as strong as standard 400 × 6.5 substrates. Improved converter assembly methods with lower, more uniform forces will likely be required to successfully assemble converters with such weak substrates in production.
Journal Article

EMC Management in HEV/EV Applications

2014-04-01
2014-01-0219
Shielding of the high voltage cabling is a cost effective method for reducing unwanted EMI in hybrid and electric vehicles. Ensuring the shielding effectiveness (SE) of the high voltage (HV) cabling and connectors is critical at the component and subsystem level. The effectiveness of the shielding must also be proven for the useful life of the vehicle. This paper will examine some of the critical aspects of ensuring good SE of HV cabling and connectors in hybrid and electric vehicles. This paper will also review some of the test methods utilized to make these measurements.
Technical Paper

Ethanol Flex Fuel system with Delphi Heated injector application

2014-04-01
2014-01-1369
After the second worldwide oil crisis, Brazil put in place by 1975 a strategic plan to stimulate the usage of ethanol (from sugar cane), to be mixed to the gasoline or to be sold as 100% ethanol fuel (known as E100). To enable an engine to operate with both gasoline and ethanol (and their mixtures), by 2003 the “Flex Fuel” technology was implemented. By 2012 calendar year, from a total of about 3.8 million vehicles sold in the Brazilian market, 91% offered the “Flex Fuel” technology, and great majority used a gasoline sub-tank to assist on cold starts (typically below 15°C, where more than 85% of ethanol is present in fuel tank). The gasoline sub-tank system suffers from issues such as gasoline deterioration, crash-worthiness and user inconvenience such as bad drivability during engine warm up phase. This paper presents fuel injector technologies capable of rapidly electrically heating the ethanol fuel for the Brazilian transportation market.
Technical Paper

Force Distribution on Catalysts During Converter Assembly

2000-03-06
2000-01-0222
Thinwall substrates used in modern catalytic converters are more sensitive to assembly and operating forces. Various converter assembly processes are characterized using real time force transducer technology. The force distribution data from these assembly methods are presented. The analysis of this data leads to recommendations for packaging of converters depending on catalyst strength.
Technical Paper

GDi Nozzle Parameter Studies Using LES and Spray Imaging Methods

2014-04-01
2014-01-1434
Development of in-cylinder spray targeting, plume penetration and atomization of the gasoline direct-injection (GDi) multi-hole injector is a critical component of combustion developments, especially in the context of the engine downsizing and turbo-charging trend that has been adopted in order to achieve the European target CO2, US CAFE, and concomitant stringent emissions standards. Significant R&D efforts are directed towards the optimization of injector nozzle designs in order to improve spray characteristics. Development of accurate predictive models is desired to understand the impact of nozzle design parameters as well as the underlying physical fluid dynamic mechanisms resulting in the injector spray characteristics. This publication reports Large Eddy Simulation (LES) analyses of GDi single-hole skew-angled nozzles, with β=30° skew (bend) angle and different nozzle geometries.
Technical Paper

Modeling of the Impact of Ultrasonic Welding of Harness on the Terminals Integrity

2014-04-01
2014-01-0224
The ultrasonic (US) welding of wires in automotive harnesses is increasingly used as an alternative to mechanical splices. However, this welding process may harm the electrical terminals crimped on the wires ends as a result on the energy propagation along the wire up the terminal with a frequency that is close to the terminals' natural frequencies. The modeling of the ultrasonic welding had been investigated by several authors from the process and weld strength perspective but the modeling of its effect on electrical terminals in automotive harnesses has not been given much attention in the literature. This paper describes and illustrates approaches used for modeling of the impact of the US welding on the electrical terminals in terms of stress and deformation from qualitative and quantitative perspectives and the related benefits/limitations from predictive standpoint. Illustrations are given on an actual terminal with respect to a typical ultrasonic welding process.
Technical Paper

Primary Atomization of a GDi Multi-Hole Plume Using VOF-LES Method

2014-04-01
2014-01-1125
This study is concerned with quantitative analysis of the primary atomization, regarding the droplet size-velocity distribution function, of a multi-hole GDi plume through application of the Volume-of-Fluid Large Eddy Simulation (VOF-LES) method. The distinguishing feature of this study is the inclusion of an accurate seat /nozzle flow domain into the simulation. A VOF-LES study of the seat-nozzle flow and the near-field primary atomization of a single plume of a GDi multi-hole seat is performed. The geometry pertains to a purpose-built 3-hole GDi seat with three identical flow hole and counter-bore nozzles, arranged with 120° circumferential spacing. The VOF-LES prediction of the jet primary breakup structure and near-field macroscale is compared with spray imaging data. The droplet size and velocity distributions within a 4mm vicinity of the nozzle are analyzed. The results show production of a wide droplet size distribution through the jet primary atomization.
Technical Paper

Protecting Development Engines during Controls Development and Calibration

2014-04-01
2014-01-1172
Advanced development engines are one-of-a-kind and expensive and generally have few, if any, spare parts available. These engines are particularly vulnerable to damage during control and calibration development due to unintended control actions from newly-generated algorithms, errant operator control commands, or lack of understanding of control limits for safe operation. Engine damage can result in significant program delays and expenses. Delphi is developing control systems and calibrations for the vehicle implementation of an experimental engine concept which incorporates a new high efficiency combustion process. Many of the algorithms within the control structure are new and untested, and therefore represent significant risk to these engines. The large amount of data displayed on computer test control screens makes human monitoring of all parameters nearly impossible, especially when display windows are layered on top of one another.
Technical Paper

Robust Thermal Design of a DC-DC Converter in an Electric Vehicle

2014-04-01
2014-01-0709
In hybrid electric vehicles (HEVs) and full electric vehicles (EVs), efficient electrical power management with proper supply of power at the required voltage levels is essential. A DC (Direct Current)-DC converter is one of the key electrical units in a HEV/EV. The DC-DC converter dealt in the present work is intended to create the DC voltages necessary to power the accessories. The electronic circuit in this DC-DC converter consists of high power devices like Metal-Oxide Semiconductor Field-Effect Transistors (MOSFETs), inductors, transformers, etc. mounted on a printed circuit board (PCB). The DC-DC converter interacts with a high voltage battery pack and supplies a low voltage power to the accessory battery. Due to this power handling operation, the devices in the convertor experience high temperatures. The temperature rise of the devices beyond the permissible limits could be detrimental to an efficient and safe operation of the converter.
Journal Article

Technical Issues of 100Mbit/s Ethernet Transmission based on Standard Automotive Wiring Components

2014-04-01
2014-01-0249
The presentation describes a technical solution for 100 Mbit/s Ethernet Data transmission cabling. This solution considers the specific requirements of automotive wiring harness and manufacturing. It bases on standard automotive connectors and headers. Currently the development of automotive electronic architecture considers central ECU or data backbone structure for the upcoming EE architecture (e. g. single ECU for network; SEN). For these structures solid and cost effective data backbone solutions are essential. Ethernet, a wide distributed and well-known bus system for office and industry data distribution provide a wide range of software tools and many physical layer solutions. Several cabling systems are available. Based on this we propose a solution for automotive application.
Technical Paper

Thin-Film High Voltage Capacitors on Ultra-Thin Glass for Electric Drive Vehicle Inverter Applications

2014-04-01
2014-01-0417
The propulsion system in most Electric Drive Vehicles (EDVs) requires an internal combustion engine in combination with an alternating current (AC) electric motor. An electronic device called a power inverter converts battery DC voltage into AC power for the motor. The inverter must be decoupled from the DC source, so a large DC-link capacitor is placed between the battery and the inverter. The DC-link capacitors in these inverters negatively affect the inverters size, weight and assembly cost. To reduce the design/cost impact of the DC-link capacitors, low loss, high dielectric constant (κ) ferroelectric materials are being developed. Ceramic ferroelectrics, such as (Pb,La)(Zr,Ti)O3 [PLZT], offer high dielectric constants and high breakdown strength. Argonne National Laboratory and Delphi Electronics & Safety have been developing thin-film capacitors utilizing PLZT.
Journal Article

Transient Liquid Phase Sintering (TLPS) Conductive Adhesives for High Temperature Automotive Applications

2014-04-01
2014-01-0797
Power electronics products such as inverters and converters involve the use of Thermal Interface Materials (TIMs) between high power packages and a heat exchanger for thermal management. Conventional TIMs such as thermal greases, gels, solders and phase change materials (PCMs) face challenges to meet the need of these products to operate reliably at much higher temperatures. This has driven the development of new TIMs such as Transient Liquid Phase Sintering (TLPS) Conductive Adhesives. TLPS adhesives have been developed for many potential applications due to various advantages like lead free, flux-less and particularly their low temperature processability, which enables the use of heat sensitive components in the design. With all these motivations, a project was launched and completed to assess TLPS adhesives as a unique TIM for high temperature automotive applications due to its high bulk thermal conductivity and metallic joint formation at interfaces.
X