Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

A Prognostic and Data Fusion Based Approach to Validating Automotive Electronics

2014-04-01
2014-01-0724
There is a continual growth of test and validation in high reliability product applications such as automotive, military and avionics. Principally this is driven by the increased use and complexity of electronic systems deployed in vehicles, in addition to end user reliability expectations. Higher reliability expectations consequently driving increased test durations. Furthermore product development cycles continue to reduce, resulting in less available time to perform accelerated life tests. The challenge for automotive electronic suppliers is performing life tests in a shorter period of time whilst reducing the overall associated costs of validation testing. In this paper, the application of prognostic and health monitoring techniques are examined and a novel approach to the validation and testing of automotive electronics proposed which it is suggested may be more cost effective and efficient than traditional testing.
Technical Paper

Adapting Validation Processes to Meet Worldwide Market Demands

2014-04-01
2014-01-1437
Heavy duty diesel engine development has always faced high customer durability requirements, short development timelines and increasingly stringent emissions legislations. However, more frequently heavy duty engines are being used in multiple vehicle platforms across the globe with increasingly stringent quality demands in emerging markets. In order to meet engine life requirements, Delphi Diesel Systems has adapted accepted validation procedures to evaluate their system performance for the global market. In addition to durability and structural testing Delphi Diesel Systems has introduced specialized tests to validate their product at extremes of environmental conditions and fuel properties and has increased OEM collaboration. This paper details some of the adjustments made to the validation test suite to meet the specific challenges of the Heavy Duty market.
Technical Paper

Advancements in Converter Durability to Enable Close Mounted Converters for Stringent Emissions Regulations

1999-10-25
1999-01-3621
Close coupled catalysts and new ceramic catalyst substrates have significantly improved the light-off performance of automotive converters required to meet stringent emission requirements. The hotter environment of these catalytic converters and the lower structural strength of the ceramic substrates require the rethinking of converter designs. The development of new package requirements to accommodate the change in environment and new substrates are discussed. A historical perspective on converter durability is presented as reference. Development of durability test protocols is essential to verifying product durability performance to these new environments. Data collection and documentation of testing templates are shown to demonstrate the effectiveness of tests that represent real world environments. Design improvements to address failure modes are discussed along with durability improvement results.
Technical Paper

Designed Experiment to Evaluate the Canning Strength of Various High Cell Density / Ultra Thin Wall Ceramic Monoliths

2001-09-24
2001-01-3663
High cell density (HCD) (≥ 600 cpsi) and /or ultra thin wall (UTW) (≤ 4 mil) extruded ceramic monolith substrates are being used in many new automotive catalyst applications because they offer (1) increased geometric surface area, (2) lower thermal mass, (3) increased open frontal area and (4) higher heat and mass transfer rates. Delphi has shown in previous papers how to use the effectiveness, NTU theory, to optimize the various benefits of these HCD / UTW catalysts. A primary disadvantage of these low solid fraction substrates is their reduced structural strength, as measured by a 3-D hydrostatic (isostatic) test. The weakest of these new substrates is only 10 to 20% as strong as standard 400 × 6.5 substrates. Improved converter assembly methods with lower, more uniform forces will likely be required to successfully assemble converters with such weak substrates in production.
Technical Paper

Force Distribution on Catalysts During Converter Assembly

2000-03-06
2000-01-0222
Thinwall substrates used in modern catalytic converters are more sensitive to assembly and operating forces. Various converter assembly processes are characterized using real time force transducer technology. The force distribution data from these assembly methods are presented. The analysis of this data leads to recommendations for packaging of converters depending on catalyst strength.
Journal Article

How Stress Variance in the Automotive Environment will Affect a ‘True’ Value of the Reliability Demonstrated by Accelerated Testing

2014-04-01
2014-01-0722
This paper discusses the effect of the field stress variance on the value of demonstrated reliability in the automotive testing. In many cases the acceleration factor for a reliability demonstration test is calculated based on a high percentile automotive stress level, typically corresponding to severe user or environmental conditions. In those cases the actual field (‘true’) reliability for the population will be higher than that demonstrated by a validation test. This paper presents an analytical approach to estimating ‘true’ field reliability based on the acceleration model and stress variable distribution over the vehicle population. The method is illustrated by an example of automotive electronics reliability demonstration testing.
Journal Article

Localized Cooling for Human Comfort

2014-04-01
2014-01-0686
Traditional vehicle air conditioning systems condition the entire cabin to a comfortable range of temperature and humidity regardless of the number of passengers in the vehicle. The A/C system is designed to have enough capacity to provide comfort for transient periods when cooling down a soaked car. Similarly for heating, the entire cabin is typically warmed up to achieve comfort. Localized heating and cooling, on the other hand, focuses on keeping the passenger comfortable by forming a micro climate around the passenger. This is more energy efficient since the system only needs to cool the person instead of the entire cabin space and cabin thermal mass. It also provides accelerated comfort for the passenger during the cooling down periods of soaked cars. Additionally, the system adapts to the number of passengers in the car, so as to not purposely condition areas that are not occupied.
Technical Paper

Methodology to Compare Effectiveness of Lubricating Additives in a Polymeric Matrix

2014-04-01
2014-01-1034
A majority of the plastics manufacturing operations are dependent on the formability of the molten thermoplastics. Ability of the material to flow at a set temperature influences the formability and the overall polymer melt process. Lubricating additive technologies are being developed to engineer the melt flow performance of the resin, promoting the compounding and molding process such as to reduce torque on the motor, reduced shear degradations, enhance uniform filling of hard-to-fill section, promoting thin wall molding, and influence the overall cycle time. Various lubricants are used in formulations to supplement superior flow and metal release with minimal effect on mechanical properties. This paper discusses the methodology to characterize the effectiveness of melt flow additives through comparing two different processing aids in Polybutylene terephthalate (PBT) polyester filled and unfilled matrix and imply differences in processing.
Journal Article

Model-Based Real-Time Testing of Embedded Automotive Systems

2014-04-01
2014-01-0188
The paper presents a model-based approach to testing embedded automotive software systems in a real-time. Model-based testing approach relates to a process of creating test artifacts using various kinds of models. Real-time testing involves the use of a real-time environment to implement test application. Engineers shall use real-time testing techniques to achieve greater reliability and/or determinism in a test system. The paper contains an instruction how to achieve these objectives by proper definition, implementation, execution, and evaluation of test cases. The test cases are defined and implemented in a modeling environment. The execution and evaluation of test results is made in a real-time machine. The paper is concluded with results obtained from the initial deployment of the approach on a large scale in production stream projects.
Technical Paper

Modeling of the Impact of Ultrasonic Welding of Harness on the Terminals Integrity

2014-04-01
2014-01-0224
The ultrasonic (US) welding of wires in automotive harnesses is increasingly used as an alternative to mechanical splices. However, this welding process may harm the electrical terminals crimped on the wires ends as a result on the energy propagation along the wire up the terminal with a frequency that is close to the terminals' natural frequencies. The modeling of the ultrasonic welding had been investigated by several authors from the process and weld strength perspective but the modeling of its effect on electrical terminals in automotive harnesses has not been given much attention in the literature. This paper describes and illustrates approaches used for modeling of the impact of the US welding on the electrical terminals in terms of stress and deformation from qualitative and quantitative perspectives and the related benefits/limitations from predictive standpoint. Illustrations are given on an actual terminal with respect to a typical ultrasonic welding process.
X