Refine Your Search

Topic

Author

Search Results

Technical Paper

5th Percentile Driver Out of Position Computer Simulation

2000-03-06
2000-01-1006
A finite element model of a folded airbag with the module cover and steering wheel system was developed to estimate the injury numbers of a 5th percentile female dummy in an out-of-position (OOP) situation. The airbag model was correlated with static airbag deployments and standard force plate tests. The 5th percentile finite element dummy model developed by First Technology Safety Systems (FTSS) was used in the simulation. The following two OOP tests were simulated with the airbag model including a validated steering wheel finite element model: 1. Chest on air bag module for maximum chest interaction from pressure loading (MS6-D) and 2. Neck on air bag module for maximum neck interaction from membrane loading (MS8-D). These two simulations were then compared to the test results. Satisfactory correlation was found in both the cases.
Technical Paper

A Comprehensive Hazard Analysis Technique for Safety-Critical Automotive Systems

2001-03-05
2001-01-0674
Hazard analysis plays an important role in the development of safety-critical systems. Hazard analysis techniques have been used in the development of conventional automotive systems. However, as future automotive systems become more sophisticated in functionality, design, and applied technology, the need for a more comprehensive hazard analysis approach has arisen. In this paper, we describe a comprehensive hazard analysis approach for system safety programs. This comprehensive approach involves applying a number of hazard analysis techniques and then integrating their results. This comprehensive approach attempts to overcome the narrower scope of individual techniques while obtaining the benefits of all of them.
Technical Paper

A Madymo Model of the Foot and Leg for Local Impacts

1999-10-10
99SC12
It has been reported that lower extremity injuries represent a measurable portion of all moderate-to-severe automobile crash- related injuries. Thus, a simple tool to assist with the design of leg and foot injury countermeasures is desirable. The objective of this study is to develop a mathematical model which can predict load propagation and kinematics of the foot and leg in frontal automotive impacts. A multi-body model developed at the University of Virginia and validated for blunt impact to the whole foot has been used as basis for the current work. This model includes representations of the tibia, fibula, talus, hindfoot, midfoot and forefoot bones. Additionally, the model provides a means for tensioning the Achilles tendon. In the current study, the simulations conducted correspond to tests performed by the Transport Research Laboratory and the University of Nottingham on knee-amputated cadaver specimens.
Technical Paper

A System-Safety Process For By-Wire Automotive Systems

2000-03-06
2000-01-1056
Steer-by-wire and other “by-wire” systems (as defined in the paper) offer many passive and active safety advantages. To help ensure these advantages are achieved, a comprehensive system-safety process should be followed. In this paper, we review standard elements of system safety processes that are widely applied in several industries and describe the main elements of our proposed analysis process for by-wire systems. The process steps include: (i) creating a program plan to act as a blueprint for the process, (ii) performing a variety of hazard analysis and risk assessment tasks as specified in the program plan, (iii) designing and verifying a set of hazard controls that help mitigate risk, and (iv) summarizing the findings. Vehicle manufacturers and suppliers need to work together to create and follow such a process. A distinguishing feature of the process is the explicit linking of hazard controls to the hazards they cover, permitting coverage-based risk assessment.
Technical Paper

ATD Neck Tension Comparisons for Various Sled Pulses

2002-12-02
2002-01-3324
The structure of the racecar has been the subject of much discussion with regard to crash safety. The stiffness of the structure, the amount of crush and the resulting deceleration were being judged, in some instances, as too stiff or not stiff enough for the driver. Much of this discussion centered on crash incidents for which no deceleration data were available from crash recorders (black boxes). In this paper, crash test dummy (Anthropomorphic Test Device ATD) results are compared for various idealized deceleration-time histories (deceleration pulses) that represent various structural crush characteristics. A crash velocity of 64.4 KPH (40 MPH) against a wall was used to represent a life threatening energy level.
Technical Paper

Advanced Engine Management Using On-Board Gasoline Partial Oxidation Reforming for Meeting Super-ULEV (SULEV) Emissions Standards

1999-08-17
1999-01-2927
This paper first reports on the benchmarking of a gasoline- fueled vehicle currently for sale in California that is certified to ULEV standards. Emissions data from this vehicle indicate the improvements necessary over current technology to meet SULEV tailpipe standards. Tests with this vehicle also show emissions levels with current technology under off-cycle conditions representative of real-world use. We then present Delphi's strategy of on-board partial oxidation (POx) reforming with gasoline-fueled, spark-ignition engines. On-board reforming provides a source of hydrogen fuel. Tests were run with bottled gas simulating the output of a POx reformer. Results show that an advanced Engine Management System with a small on-board reformer can provide very low tailpipe emissions both under cold start and warmed-up conditions using relatively small amounts of POx gas. The data cover both normal US Federal Test Procedure (FTP) conditions as well as more extreme, off-cycle operation.
Technical Paper

Air Cleaner Shell Noise Reduction with Finite Element Shape Optimization

1997-05-20
971876
In this paper, finite element shape optimization is used to determine the optimum air cleaner shape and rib design for low shell noise. Shape variables are used to vary the height and location of rib elements, as well as vary the shape of the air cleaner surfaces. The optimization code evaluates each design variation and selects a search direction that will reduce surface velocity. Sound power radiation is calculated for each optimized design using an acoustic code. Large reductions in shell noise were achieved by optimizing the shape of the air cleaner surface and rib design. Optimization of the rib pattern alone yielded a local optimization, as opposed to a global optimization that represented the best possible design.
Technical Paper

An Integrated Approach to Automotive Safety Systems

2000-03-06
2000-01-0346
The industry strategy for automotive safety systems has been evolving over the last 20 years. Initially, individual passive devices and features such as seatbelts, airbags, knee bolsters, crush zones, etc. were developed for saving lives and minimizing injuries when an accident occurs. Later, preventive measures such as improving visibility, headlights, windshield wipers, tire traction, etc. were deployed to reduce the probability of getting into an accident. Now we are at the stage of actively avoiding accidents as well as providing maximum protection to the vehicle occupants and even pedestrians. Systems that are on the threshold of being deployed or under intense development include collision detection / warning / intervention systems, lane departure warning, drowsy driver detection, and advanced safety interiors.
Technical Paper

Analytical Solution for Heat Flow in Cylinder and Its Application in Calculating Converter Skin Temperature

2000-03-06
2000-01-0301
In the catalytic converter, the thermal conductivity of the insulation material (intumescent mat) placed between the ceramic catalyst and the metal shell is strongly dependent on the temperature, resulting in the solving of non-linear heat conduction equations. In this paper, the analytic solution for the steady heat flow in a cylinder with temperature dependent conductivity is given. Using this analytic solution for the mat and including convection and radiation at the converter skin, an analytical expression for calculating converter skin temperature is obtained. This expression can be easily incorporated in a Fortran code to calculate the temperatures.
Technical Paper

Challenges in Simulation and Sensor Development for Occupant Protection in Rollover Accidents

2000-11-01
2000-01-C038
Automotive occupant safety continues to evolve. At present this area has gathered a strong consumer interest which the vehicle manufacturers are tapping into with the introduction of many new safety technologies. Initially, individual passive devices and features such as seatbelts, knee- bolsters, structural crush zones, airbags etc., were developed for to help save lives and minimize injuries in accidents. Over the years, preventive measures such as improving visibility, headlights, windshield wipers, tire traction etc., were deployed to help reduce the probability of getting into an accident. With tremendous new research and improvements in electronics, we are at the stage of helping to actively avoid accidents in certain situations as well as providing increased protection to vehicle occupants and pedestrians.
Technical Paper

Comfort and Usability of the Seat Belts

2001-03-05
2001-01-0051
Seat belts are the primary occupant-protection devices for vehicle crashes. Field statistics show that proper usage of seat belts substantially contributes to decreases in the fatality rate and injury level. To collect first-hand information regarding seat belt comfort and usability, a questionnaire survey was conducted. The most significant problems were found as belt trapping in the door, awkward negotiating with clothes, belt twisting, belt locking up, and difficulty to locate the buckle. The survey results indicated that drivers who are over 40 years old have more complaints than younger drivers. When the driver's age increases to 55 and above, belt pulling force and inappropriate and loose fitting of the belt on the body become major issues. Female drivers have more complaints than male drivers. Short statured drivers need both hands to pull and guide the retracting of the belt.
Technical Paper

Comparison of Lidar-Based and Radar-Based Adaptive Cruise Control Systems

2000-03-06
2000-01-0345
Since the late 1980s, Delphi Automotive Systems has been very involved with the practical development of a variety of Collision Avoidance products for the near- and long-term automotive market. Many of these complex collision avoidance products will require the integration of various vehicular components/systems in order to provide a cohesive functioning product that is seamlessly integrated into the vehicle infrastructure. One such example of this system integration process was the development of an Adaptive Cruise Control system on an Opel Vectra. The design approach heavily incorporated system engineering processes/procedures. The critical issues and other technical challenges in developing these systems will be explored. Details on the hardware and algorithms developed for this vehicle, as well as the greater systems integration issues that arose during its development will also be presented.
Technical Paper

Development Experience with Steer-by-Wire

2001-08-20
2001-01-2479
Recent advances in dependable embedded system technology, as well as continuing demand for improved handling and passive and active safety improvements, have led vehicle manufacturers and suppliers to actively pursue development programs in computer-controlled, by-wire subsystems. These subsystems include steer-by-wire and brake-by-wire, and are composed of mechanically de-coupled sets of actuators and controllers connected through multiplexed, in-vehicle computer networks; there is no mechanical link to the driver. This paper addresses fundamental benefits and issues of steer-by-wire, especially those related to automated vehicle control and steering feel quality as perceived by the driver.
Technical Paper

Development of a Haptic Braking System as an ACC Vehicle FCW Measure

2002-05-07
2002-01-1601
This work examines the development and implementation of a pulsing brake control system as part of a Forward Collision Warning (FCW) System for an Adaptive Cruise Control (ACC) prototype vehicle. The brake pulse is a likely candidate to be employed with visual and auditory cues in the event of an imminent collision alert level when the driver is not in ACC mode.
Technical Paper

Development of an Automotive Rollover Sensor

2000-05-01
2000-01-1651
It is estimated that in the United States, nearly one quarter of all fatal automobile accidents involve a vehicle rollover. [1] In order to reduce fatalities and serious injuries, it is desirable to develop a sensing system that can detect an imminent rollover condition with sufficient time to activate occupant safety protection devices. The goals of a Rollover Sensing Module (RSM) are; 1 To accurately estimate vehicle roll and pitch angles 2 To reliably predict in a timely manner an imminent rollover 3 To eliminate false activation of safety devices 4 To function properly during airborne conditions 5 To be as autonomous as possible, not requiring information from other vehicle subsystems.
Technical Paper

Driver Injuries in US Single-Event Rollovers

2000-03-06
2000-01-0633
The purpose of this paper is to investigate occupant injuries which may be sustained during a single-event crash with known roll mechanism. The data was obtained from the weighted National Automotive Sampling System/ Crashworthiness Data System (NASS-CDS) for calendar years 1992 to 1996. The effect of number of rollover turns, roll direction, ejection and belt usage on driver injury responses was analyzed in single-event trip-overs. Trip-overs were chosen for the analysis because they account for over 50% of rollover crashes. The number of rollovers was divided in 3 categories: ¼ to ½ turn, ¾ to 1 turn and above 1 turn. Roll direction was either roll-left or a rollright along the longitudinal axis of the vehicle. Roll-left represents a roll with the driver side leading, while a roll right is with the right front passenger side leading. In the database used in this study, there were three times more belted drivers than unbelted.
Technical Paper

Environmentally Conscious Manufacturing of TPO Instrument Panel Skins

2000-03-06
2000-01-0023
Thermoplastic polyolefin (TPO) instrument panel skins are in demand in Europe and Asia as a solution to final product disposition environmental concerns. In North America TPO is valued for its durability characteristics (particularly heat and UV aging) and capability for deployment of seamless airbags at cold temperatures. Desiring to have an environmentally “green” system to create the “green” product, Delphi designed a manufacturing process with in-plant closed loop recycling of 100% offal directly back into the skin and the use of waterbased coating system for combating concerns with solvents. Delphi's development of recyclable TPO skin for instrument panels was introduced on 1997 production of Mercedes-Benz M-class. The paper will describe how the systems approach was used in overcoming the challenges involved in closed loop recycling of engineered offal during sheet manufacturing and thermoforming processes and the implementation of waterbased primer and topcoat systems.
Technical Paper

Flawless Manufacturing of RACam through XCP Protocol

2016-04-05
2016-01-0047
RACam [1] is an Active Safety product designed and manufactured at Delphi and is part of their ADAS portfolio. It combines two sensors - Electronically Scanned RADAR and Camera in a single package. RADAR and Vision fusion data is used to realize safety critical systems such as Adaptive Cruise Control (ACC), Autonomous Emergency Braking (AEB), Lane Departure Warning (LDW), Lane Keep Assist (LKA), Traffic Sign Recognition (TSR) and Automatic Headlight Control (AHL). Figure 1 RACam Front View. With an increase in Active Safety features in the automotive market there is also a corresponding increase in the complexity of the hardware which supports these safety features. Delphi’s hardware design for Active Safety has evolved over the years. In Delphi’s RACam product there are a number of critical components required in order to realize RADAR and Vision in a single package. RACam is also equipped with a fan and heater to improve the operating temperature range.
Technical Paper

Influence of Active Chassis Systems on Vehicle Propensity to Maneuver-Induced Rollovers

2002-03-04
2002-01-0967
The purpose of this paper is to evaluate through simulations the effects of active chassis systems on vehicle propensity to rollover caused by aggressive handling maneuvers. A 16 degree-of-freedom computer model of a full vehicle is used for this purpose. It includes models of active chassis systems and the associated control algorithms, and allows for simulation of vehicle dynamic behavior under large roll angles. The controllable chassis systems considered in this investigation are active rear steer, brake based vehicle stability enhancement system and active anti-roll bar. The maneuvers used in simulation are the double lane change and the fishhook maneuvers with increasing steering amplitudes. The vehicle represents a midsize SUV with a marginal static stability factor of 1.09 and aggressive tires. The results of simulations demonstrate that the uncontrolled vehicle rolls over in both maneuvers when the steering angle is sufficiently large.
Technical Paper

LIN Bus and its Potential for Use in Distributed Multiplex Applications

2001-03-05
2001-01-0072
The increasing features and complexity of today's automotive architectures are becoming increasingly difficult to manage. Each new innovation typically requires additional mechanical actuators and associated electrical controllers. The sheer number of black boxes and wiring are being limited not by features or cost but by the inability to physically assemble them into a vehicle. A new architecture is required which will support the ability to add new features but also enable the Vehicle Assembly Plants to easily assemble and test each subsystem. One such architecture is a distributed multiplex arrangement that reduces the number of wires while enabling flexibility and expandability. Previous versions have had to deal with issues such as noise immunity at high switching currents. The LIN Bus with its low cost and rail-to-rail capability may be the key enabling technology to make the multiplexed architecture a reality.
X