Refine Your Search

Topic

Author

Search Results

Technical Paper

42V Power Supply Systems Impact for Emerging Market Projects

2005-11-22
2005-01-4115
This paper provides a survey about the consequences of a 42V Power Supply System for new vehicle projects, specially, its impact on directed project for Emerging Markets. At a first moment, it will be described new systems and its demand for additional power availability for future projects, such as electrical steering and brake systems; electrical air conditioning compressor; and electrical water and oil pumps. Following this subject, it will be presented possible alternatives for 14/42V Power Supply Systems, and also its impact over Power and Signal Distribution System components, such as connector, terminals, cables, relays, electrical centers, etc. Finally, the previous presented scenarios will be analyzed under a point of view for the Emerging Market demand for such new proposed systems, looking for best alternative driven.
Technical Paper

5th Percentile Driver Out of Position Computer Simulation

2000-03-06
2000-01-1006
A finite element model of a folded airbag with the module cover and steering wheel system was developed to estimate the injury numbers of a 5th percentile female dummy in an out-of-position (OOP) situation. The airbag model was correlated with static airbag deployments and standard force plate tests. The 5th percentile finite element dummy model developed by First Technology Safety Systems (FTSS) was used in the simulation. The following two OOP tests were simulated with the airbag model including a validated steering wheel finite element model: 1. Chest on air bag module for maximum chest interaction from pressure loading (MS6-D) and 2. Neck on air bag module for maximum neck interaction from membrane loading (MS8-D). These two simulations were then compared to the test results. Satisfactory correlation was found in both the cases.
Technical Paper

A Comprehensive Hazard Analysis Technique for Safety-Critical Automotive Systems

2001-03-05
2001-01-0674
Hazard analysis plays an important role in the development of safety-critical systems. Hazard analysis techniques have been used in the development of conventional automotive systems. However, as future automotive systems become more sophisticated in functionality, design, and applied technology, the need for a more comprehensive hazard analysis approach has arisen. In this paper, we describe a comprehensive hazard analysis approach for system safety programs. This comprehensive approach involves applying a number of hazard analysis techniques and then integrating their results. This comprehensive approach attempts to overcome the narrower scope of individual techniques while obtaining the benefits of all of them.
Technical Paper

A Mild Hybrid SIDI Turbo Passenger Car Engine with Organic Rankine Cycle Waste Heat Recovery

2019-09-09
2019-24-0194
While striving for more fuel-efficient vehicles, all possible measures are considered to increase the efficiency of the combustion engine powertrain. 48V mild hybrid technology is one such measure, SIDI (Spark Ignited Direct Injection) engines with Miller technology are another, while recovering energy from the engine’s waste heat (WHR) is yet another option. In this paper, results will be published from an advanced engineering project at Volvo Cars including all of these components. An ethanol based Organic Rankine Cycle (ORC) WHR-system was successfully built around a 4-cylinder, 2.0 litre SIDI-engine, including 48V mild hybrid technology, with vehicle packaging considered. A dedicated control system was also developed for the ORC system including communication between it and the engine. The ORC system uses the engine exhaust as the heat source, for which a purpose-built evaporator was designed and built to fit in the vehicle tunnel.
Technical Paper

A Model-Based Brake Pressure Estimation Strategy for Traction Control System

2001-03-05
2001-01-0595
This paper presents a brake pressure estimation algorithm for Delphi Traction Control Systems (TCS). A control oriented lumped parameter model of a brake control system is developed using Matlab/Simulink. The model is derived based on a typical brake system and is generic to other types of brake control hardware systems. For application purposes, the model is simplified to capture the dominant dynamic brake pressure response. Vehicle experimental data collected under various scenarios are used to validate the algorithm. Simulation results show that the algorithm gives accurate pressure estimation. In addition, the calibration procedure is greatly simplified
Technical Paper

A Model-based Environment for Production Engine Management System (EMS) Development

2001-03-05
2001-01-0554
This paper describes an environment for the development of production Engine Management Systems (EMS). This includes a formal framework and modeling methodology. The environment is based on using Simulink/Stateflow for developing a control system executable specification and a plant model. This allows for simulations of the system to be performed at the engineer's desk, which is identical performance with production software. We provide the details for incorporating production legacy code into the Simulink/Stateflow control system. The system includes a multi-rate, and event driven operating system. This system is developed to facilitate new algorithm development and automated software testing. Based on Simulink/Stateflow this specification will be suitable for use with commercial automatic code generation tools.
Technical Paper

A Reference Architecture for Infotainment Systems

2006-10-16
2006-21-0013
Volvo Car Corporation has developed a Reference Architecture for PAG1 Infotainment Systems. A Reference Architecture is an architecture scoping over more than a single system, i.e. an architecture aimed for a family of systems. The Infotainment Reference Architecture has since 2001 been successfully applied for the PAG family which so far covers the infotainment systems of Volvo XC90, Volvo S40/V50, Jaguar XK, Aston Martin DB9 and the brand new Volvo S80. In 1999, the system design departments started up with the clear objective to develop a system solution aiming for the PAG infotainment system family. The work was carried out according to the established development process at Volvo Cars. A year later a discouraging design review was performed. The number of involved functions, the level of function interaction and the distribution of functionalities between ECUs resulted in a non-manageable system solution.
Technical Paper

A Review of Cell Equalization Methods for Lithium Ion and Lithium Polymer Battery Systems

2001-03-05
2001-01-0959
Lithium-based battery technology offers performance advantages over traditional battery technologies at the cost of increased monitoring and controls overhead. Multiple-cell Lead-Acid battery packs can be equalized by a controlled overcharge, eliminating the need to periodically adjust individual cells to match the rest of the pack. Lithium-based based batteries cannot be equalized by an overcharge, so alternative methods are required. This paper discusses several cell-balancing methodologies. Active cell balancing methods remove charge from one or more high cells and deliver the charge to one or more low cells. Dissipative techniques find the high cells in the pack, and remove excess energy through a resistive element until their charges match the low cells. This paper presents the theory of charge balancing techniques and the advantages and disadvantages of the presented methods.
Technical Paper

A Semiconductor Gas Sensor Array for the Detection of Gas Emissions from Interior Trim Materials in Automobiles

1998-02-23
980995
The principles of an electronic nose are described briefly. It is shown how a sensor array in combination with pattern recognition software can be used for quality control and classification of car interior trim materials. Anomalies such as bad smelling leather and carpet are shown as outliers. The results are consistent with GC-MS TVOC measurements as well as with data from a human sensory panel. More needs to be done, however, regarding the sensor stability in particular before the sensor array can be used for routine classification of the trim materials.
Technical Paper

A Strategy for Developing an Inclusive Load Case for Verification of Squeak and Rattle Noises in the Car Cabin

2021-08-31
2021-01-1088
Squeak and rattle (S&R) are nonstationary annoying and unwanted noises in the car cabin that result in considerable warranty costs for car manufacturers. Introduction of cars with remarkably lower background noises and the recent emphasis on electrification and autonomous driving further stress the need for producing squeak- and rattle-free cars. Automotive manufacturers use several road disturbances for physical evaluation and verification of S&R. The excitation signals collected from these road profiles are also employed in subsystem shaker rigs and virtual simulations that are gradually replacing physical complete vehicle test and verification. Considering the need for a shorter lead time and the introduction of optimisation loops, it is necessary to have efficient and inclusive excitation load cases for robust S&R evaluation.
Technical Paper

A Study of Ground Simulation-Correlation between Wind-Tunnel and Water-Basin Tests of a Full-Scale Car

1989-02-01
890368
The aerodynamic properties of a full-scale car have been investigated in a wind-tunnel with upstream boundary layer suction, and in a water-basin where the car was rolling on the bottom. Measurements were carried out of the drag and lift forces, the static pressure distribution on the car body and the total head distribution between the car and the ground. By comparing data from the tunnel and the basin the ground simulation technique could be evaluated. The measured drag coefficients were found to be very similar in both facilities, while the absolute values of the lift coefficients were considerably higher in the tunnel. Lift differences due to configuration changes of the upperbody were essentially the same in the two facilities, while changes of the underbody caused smaller lift differences in the tunnel. In the project the water-basin technique was thoroughly investigated and proven.
Technical Paper

A Study of a Fast Light-Off Planar Oxygen Sensor Application for Exhaust Emissions Reduction

2000-03-06
2000-01-0888
It is well known that hydrocarbon reduction during a cold start is a major issue in achieving ultra low emissions standards. This paper describes one of the possible approaches for reducing the cold-start hydrocarbon emissions by using a fast “light-off” planar oxygen sensor. The goal of this study was to verify the operation characteristics of Delphi's fast “light-off” planar oxygen sensor's (INTELLEK OSP) operating characteristics and the closed-loop performance for achieving improved hydrocarbon control for stringent emission standards. Tests were conducted in open-loop and closed-loop mode under steady and transient conditions using a 1996 model year 2.4-liter DOHC in-line 4-cylinder engine with a close-coupled catalytic converter. Overall performance of the OSP showed relatively quick reaction time to reach the operating temperature.
Technical Paper

Acoustic One-Dimensional Compressor Model for Integration in a Gas-Dynamic Code

2012-04-16
2012-01-0834
An acoustic one-dimensional compressor model has been developed. This model is based on compressor map information and it is able to predict how the pressure waves are transmitted and reflected by the compressor. This is later on necessary to predict radiated noise at the intake orifice. The fluid-dynamic behavior of the compressor has been reproduced by simplifying the real geometry in zero-dimensional and one-dimensional elements with acoustic purposes. These elements are responsible for attenuating or reflecting the pressure pulses generated by the engine. In order to compensate the effect of these elements in the mean flow variables, the model uses a corrected compressor map. Despite of the fact that the compressor model was developed originally as a part of the OpenWAM™ software, it can be exported to other commercial wave action models. An example is provided of exporting the described model to GT-Power™.
Technical Paper

Advanced Canister Purge Algorithm with a Virtual [HC] sensor

2000-03-06
2000-01-0557
Both evaporative emissions and tailpipe emissions have been reduced by more than 90% from uncontrolled levels in state-of-the-art. However, now that the objective is to reach near-zero emission levels, the need for aggressive purging of the canister and fuel tank and the need for extremely precise control of engine Air/Fuel ratio (A/F) come into conflict. On-board diagnostics and the wide variation in operating conditions and fuel properties in the “real world” add to the challenge of resolving these conflicting requirements. An advanced canister purge algorithm has been developed which substantially eliminates the effect of canister purge on A/F control by estimating and compensating for the fuel and air introduced by the purge system. This paper describes the objectives and function of this algorithm and the validation of its performance.
Journal Article

Aerodynamic Effects of Different Tire Models on a Sedan Type Passenger Car

2012-04-16
2012-01-0169
Targets for reducing emissions and improving energy efficiency present the automotive industry with many challenges. Passenger cars are by far the most common means of personal transport in the developed part of the world, and energy consumption related to personal transportation is predicted to increase significantly in the coming decades. Improved aerodynamic performance of passenger cars will be one of many important areas which will occupy engineers and researchers for the foreseeable future. The significance of wheels and wheel housings is well known today, but the relative importance of the different components has still not been fully investigated. A number of investigations highlighting the importance of proper ground simulation have been published, and recently a number of studies on improved aerodynamic design of the wheel have been presented as well. This study is an investigation of aerodynamic influences of different tires.
Technical Paper

An Analytical Assessment of Rotor Distortion Attributed to Wheel Assembly

2001-10-28
2001-01-3134
The lateral runout of disc brake corner components can lead to the generation of brake system pulsation. Emphasis on reducing component flatness and lateral runout tolerances are a typical response to address this phenomenon. This paper presents the results of an analytical study that examined the effect that the attachment of the wheel to the brake corner assembly could have on the lateral distortion of the rotor. An analysis procedure was developed to utilize the finite element method and simulate the mechanics of the assembly process. Calculated rotor distortions were compared to laboratory measurements. A statistical approach was utilized, in conjunction with the finite element method, to study a number of wheel and brake corner parameters and identify the characteristics of a robust design.
Technical Paper

An Engine Coolant Temperature Model and Application for Cooling System Diagnosis

2000-03-06
2000-01-0939
A coolant temperature model of an internal combustion engine has been formulated to meet the new On-Board Diagnostics II (OBD II) requirement for coolant temperature rationality. The model utilizes information available within the production Engine Control Module (ECM). The temperature prediction capability has been tested for various “real-world” driving conditions and cycles along with regulated drive cycles. The model can be calibrated to find the appropriate timing for initiation of a diagnostic algorithm for engine cooling system and Coolant Temperature Sensor (CTS) faults. A diagnostic scheme has been developed to detect and isolate various types of cooling system failures using engine soak time information available from a low power timer in the ECM.
Technical Paper

An Expandable Passive Optical Star Network Architecture for Automotive Applications

1999-03-01
1999-01-0303
When comparing vehicle communication architectures, the passive star network has been shown to be the highest fault tolerant system. Despite this trait, the passive star architecture has not been widely implemented due to its potential application limitations: insufficient node count and relatively short node lengths. These constraints arise from the basic function of the star, i.e. to evenly distribute a given amount of optical power to all nodes connected to the star without amplification or retransmission. This paper provides a solution to overcome the limitations of the passive star through the introduction of a new communication component, the Active Distribution Node (ADN). The ADN enables a passive star network to support larger node counts and significantly longer node lengths, without sacrificing fault tolerance or the low cost nature of the basic passive star architecture.
Technical Paper

An Integrated Approach to Automotive Safety Systems

2000-03-06
2000-01-0346
The industry strategy for automotive safety systems has been evolving over the last 20 years. Initially, individual passive devices and features such as seatbelts, airbags, knee bolsters, crush zones, etc. were developed for saving lives and minimizing injuries when an accident occurs. Later, preventive measures such as improving visibility, headlights, windshield wipers, tire traction, etc. were deployed to reduce the probability of getting into an accident. Now we are at the stage of actively avoiding accidents as well as providing maximum protection to the vehicle occupants and even pedestrians. Systems that are on the threshold of being deployed or under intense development include collision detection / warning / intervention systems, lane departure warning, drowsy driver detection, and advanced safety interiors.
Technical Paper

Automotive Miniaturization Trend: Challenges for Wiring Harness Manufacturing

2010-10-06
2010-36-0160
One of the most evident trends in automotive sector is miniaturization. It is related to considerable benefits due to the potential of mass reduction, cost reduction and efficiency improvement. It involves many different automobile components and most of them are facing challenges to achieve the targets defined by car makers and final consumers. Specifically for wiring harness, it seems to be many manufacturing and process challenges to be surpassed in order to fully perceive the benefits expected with miniaturization, internally and externally. So this article aims to present an overview of literature as well as reporting of experts on this issue mentioning some of the challenges that global automotive wiring harness manufacturers are facing. Subjects as assembly automation, terminal connection and small gauge cables are discussed in the article and also a general overview of how those problems are being addressed in order to meet customer requirements.
X