Refine Your Search

Topic

Search Results

Technical Paper

A Control System Methodology for Steer by Wire Systems

2004-03-08
2004-01-1106
Steer by Wire systems provide many benefits in terms of functionality, and at the same time present significant challenges too. Chief among them is to make sure that an acceptable steering feel is achieved. Various aspects of this subjective attribute will be defined mathematically. A control system that is architected specifically to meet these challenges is presented. Furthermore, the design is made such that it would be robust to tire and loading variations. Supporting vehicle data and model results are shown as needed.
Technical Paper

A Review of Solid Materials as Alternative Ammonia Sources for Lean NOx Reduction with SCR

2009-04-20
2009-01-0907
The need for improved emissions control in lean exhaust to meet tightening, world-wide NOx emissions standards has led to the development of selective catalytic reduction of NOx with ammonia as a major technology for emissions control. Current systems are being designed to use a solution of urea (32.5 wt %) dissolved in water or Diesel Exhaust Fluid (DEF) as the ammonia source. While DEF or AdBlue® is widely used as a source of ammonia, it has a number of issues at low temperatures, including freezing below −12 °C, solid deposit formation in the exhaust, and difficulties in dosing at exhaust temperatures below 200 °C. Additionally creating a uniform ammonia concentration can be problematic, complicating exhaust packaging and usually requiring a discrete mixer.
Technical Paper

A Statistical Approach for Real-Time Prognosis of Safety-Critical Vehicle Systems

2007-04-16
2007-01-1497
The paper describes the development of a vehicle stability indicator based on the correlation between various current vehicle chassis sensors such as hand wheel angle, yaw rate and lateral acceleration. In general, there is a correlation between various pairs of sensor signals when the vehicle operation is linear and stable and a lack of correlation when the vehicle is becoming unstable or operating in a nonlinear region. The paper outlines one potential embodiment of the technology that makes use of the Mahalanobis distance metric to assess the degree of correlation among the sensor signals. With this approach a single scalar metric provides an accurate indication of vehicle stability.
Technical Paper

A Study on Low Frequency Drum Brake Squeal

2004-10-10
2004-01-2787
Low frequency drum brake squeal is often very intense and can cause high levels of customer complaints. During a noise event, vehicle framework and suspension components are excited by the brake system and result in a violent event that can be heard and felt during a brake application. This paper illustrates the experimental and analytical studies on a low frequency drum brake squeal problem that caused high warranty cost. First the environmental condition was identified and noise was reproduced. Vehicle tests were performed and operating deflection shapes were acquired. The sensitivity of the lining material to different environmental conditions was investigated. With the use of complex eigenvalue method, models were constructed to obtain further understanding of the phenomena. Finally, the squeal mechanism of a drum brake system is discussed and various solution techniques for low frequency drum brake noise are evaluated.
Technical Paper

A System Approach to the Drag Performance of Disc Brake Caliper

2003-10-19
2003-01-3300
Among the performance concerns in brake design, drag and fluid displacement are getting more attention in the requirement definition. High drag not only affects fuel efficiency and lining life, it is also a contributing factor to rotor thickness variation and brake pulsation. In this paper, a system approach to drag performance of a disc brake caliper is presented. A one-dimensional simulation model, which considers all the significant factors, including lining stiffness and hysteresis, housing stiffness, seal/groove characteristic, and stick-slide behavior between the seal and piston, is developed to capture the interactive impact of each parameter to caliper drag performance. The system model is validated with experimental measurements for caliper fluid displacement and piston retraction. A parameter study is then conducted to investigate the component interactive impact to the drag performance.
Technical Paper

An Adaptable Software Safety Process for Automotive Safety-Critical Systems

2004-03-08
2004-01-1666
In this paper, we review existing software safety standards, guidelines, and other software safety documents. Common software safety elements from these documents are identified. We then describe an adaptable software safety process for automotive safety-critical systems based on these common elements. The process specifies high-level requirements and recommended methods for satisfying the requirements. In addition, we describe how the proposed process may be integrated into a proposed system safety process, and how it may be integrated with an existing software development process.
Technical Paper

Anti-Lock Braking Performance and Hydraulic Brake Pressure Estimation

2005-04-11
2005-01-1061
Anti-Lock Brake Systems use hydraulic valves to control brake pressure and ultimately, wheel slip. The difference in pressure across these hydraulic valves affects their performance. The control of these valves can be improved if the pressure difference is known and the valve control altered accordingly. In practice, the delta- pressure is estimated. Estimating the wheel brake pressure introduces an error into the control structure of the system, i.e. the difference between the actual wheel brake pressure and the estimated wheel brake pressure. The effect of this error was investigated at the vehicle level via simulation, using stopping distance and vehicle yaw rate as evaluation criteria. Even with large errors in the brake pressure estimate, it was found that the vehicle performance was largely unaffected.
Technical Paper

Application of Robust Engineering Methods to Improve ECU Software Testing

2006-04-03
2006-01-1600
Robust Engineering techniques developed by Taguchi have traditionally applied to the optimization of engineering designs. Robust Engineering methods also may be applied to software testing of ECU algorithms. The net result is an approach capable of improving the software algorithm in one of two ways. First the approach can identify the range of areas which prove problematic to the software such that a robust solution may be developed. Conversely, the approach can be used as a general strategy to verify that the software is robust over the range of inputs tested. The robust engineering methods applied to software testing utilize orthogonal array experiments to test software over a range of inputs. The actual software trials are best performed in the simulation environment and also via automated test hardware in the loop configurations in realtime. This paper outlines a process for applying Robust Engineering methods to software testing.
Technical Paper

Brake Squeal Analysis Incorporating Contact Conditions and Other Nonlinear Effects

2003-10-19
2003-01-3343
A squeal analysis on a front disc brake is presented here utilizing the new complex eigenvalue capability in ABAQUS/Standard. As opposed to the direct matrix input approach that requires users to tailor the friction coupling matrix, this method uses nonlinear static analyses to calculate the friction coupling prior to the complex eigenvalue extraction. As a result, the effect of non-uniform contact pressure and other nonlinear effects are incorporated. Friction damping is used to reduce over-predictions and the velocity dependent friction coefficient is defined to contribute negative damping. Complex eigenvalue predictions of the example cases show very good correlation with test data for a wide range of frequencies. Finally, the participation of rotor tangential modes is also discussed.
Technical Paper

Co-Simulation Platform for Diagnostic Development of a Controlled Chassis System

2006-04-03
2006-01-1058
This paper discusses the development and application of a closed-loop co-simulation platform for a controlled chassis system. The platform is comprised of several software packages, including CarSim®(MSC Corporation), AmeSim®(ImaGine Software Corporation), MATLAB®/SIMULINK®(Mathworks Corporation). The platform provides the ability to quickly evaluate enhancements to existing algorithms and to evaluate new control or diagnostic concepts, making it a rapid medium for development, testing and validation. The co-simulation platform was configured with real vehicle calibration data and used to test the validity/limitations of a simple model-based sensor diagnostics strategy. Using this approach, it was possible to quickly check for performance issues and consider needed corrections or enhancements without incurring the time and cost burden associated with in-vehicle testing.
Technical Paper

Control of Brake- and Steer-by-Wire Systems During Brake Actuator Failure

2006-04-03
2006-01-0923
In this paper a method of mitigating the consequences of potential brake actuator failure in vehicles with brake-by-wire (BBW) and possibly with steer-by-wire (SBW) systems is described. The proposed control algorithm is based on rules derived from general principles of vehicle dynamics. When a failure of one actuator is detected, the algorithm redistributes the braking forces among the remaining actuators in such a way that the desired deceleration of vehicle is followed as closely as possible, while the magnitude and the rate of change of the yaw moment caused by asymmetric braking are properly managed. When vehicle is equipped with BBW system only, or when the desired deceleration can be obtained by redistributing of braking forces, without generating an undesired yaw moment, no steering correction is used. Otherwise, a combination of brake force redistribution and steering correction (to counter the yaw moment generated by non-symmetric braking) is applied.
Technical Paper

Controller Integrity in Automotive Failsafe System Architectures

2006-04-03
2006-01-0840
Embedded controllers and digital signal processors are increasingly being used in automotive safety critical control systems. Controller integrity is a significant concern in these systems. Over the past decade, several techniques have been published about controller safety and integrity verification. These techniques include: single processor with watchdog, dual processors, dual core processor, and asymmetric processor (intelligent watchdog). Each of these techniques have benefits, however, many new non-distributed safety-critical systems are applying the asymmetric processor technique to help verify controller integrity. This paper discusses an overview of five controller integrity techniques, and then provides a detailed discussion of an asymmetric processor approach. This paper presents two different options within the asymmetric processor approach.
Technical Paper

Diagnosis Concept for Future Vehicle Electronic Systems

2004-10-18
2004-21-0010
As automotive electronic control systems continue to increase in usage and complexity, the challenges for developing automotive diagnostics also increase. Reduced development cycle times, the increased significance of diagnostics for safety critical systems, and the integration of vehicle systems across multiple control systems all add to the tasks of developing diagnostics for the automobiles of today and tomorrow. Addressing automotive diagnostics now requires the Tier 1 supplier to utilize a formal diagnostic development methodology. There are also opportunities for Tier 1 suppliers to add value by developing vehicle-level supervisory diagnostic strategies, in addition to subsystem and system-level diagnostic strategies. There is also a prospect to provide strategies and tools to enhance service at the vehicle level. This paper proposes an approach for Tier 1 suppliers to address diagnostic and service issues at the component, system, and vehicle level.
Technical Paper

Evaluation of Power Devices for Automotive Hybrid and 42V Based Systems

2004-03-08
2004-01-1682
With the requirements for reducing the emissions and improving the fuel economy, the automotive companies are developing hybrid, 42 V and fuel cell vehicles. Power electronics is an enabling technology for the development of environmental friendly vehicles, and to implement the various vehicle electrical architectures to obtain the best performance. In this paper, the requirements of the power semiconductor devices and the criteria for selecting the power devices for various types of low emission vehicles are presented. A comparative study of the most commonly used power devices is presented. A brief review of the future power devices that would enhance the performance of the automotive power conversion systems is also presented.
Technical Paper

Exploring the Trade-Off of Handling Stability and Responsiveness with Advanced Control Systems

2007-04-16
2007-01-0812
Advanced chassis control systems enable a vehicle to achieve new levels of performance in handling stability and responsiveness. In recent work by NHTSA and others, the performance of Electronic Stability Control (ESC) systems has been studied with focus on yaw stability and roll stability of vehicles on high friction surfaces. However, it is recognized that vehicle handling responsiveness is also an important aspect that should be maintained. This paper explores the trade-offs between yaw rate, side slip, and roll motions of a vehicle, and their relationships to handling stability and handling responsiveness. This paper further describes how various control systems are able to manage these motions. The paper also discusses methods to assess vehicle stability and responsiveness using specific maneuvers and measurements, and it includes data from vehicle tests on a slippery surface.
Technical Paper

Hill Hold Moding

2005-04-11
2005-01-0786
A typical problem that is encountered by drivers of vehicles with manual transmissions is rollback on an incline. This occurs when the driver is trying to coordinate the release of the brake pedal with the release of the clutch pedal and application of the accelerator all at the same time. If not done in harmony, the vehicle will roll down the incline. While the Hill Hold function is a highly desirable feature in manual transmission vehicles, it also enhances the driving experience in automatic transmission vehicles equipped with hybrid powertrains. The Hill Hold feature supports the Stop and Go performance associated with a hybrid powertrain by holding the vehicle on an incline and preventing undesired motion. The objective of this paper is to describe the implementation of the Hill Hold feature using an electric and / or a hydraulic brake control system. The paper describes the moding states in implementing the Hill Hold function at various levels of design complexity.
Technical Paper

Hydraulic Design Considerations for EHB Systems

2003-03-03
2003-01-0324
Brake performance can be divided into two distinct classes: base brake performance and controlled brake performance. A base brake event can be described as a normal or typical stop in which the driver maintains the vehicle in its intended direction at a controlled deceleration level that does not closely approach wheel lock. All other braking events where additional intervention may be necessary, such as wheel brake pressure control to prevent lock-up, application of a wheel brake to transfer torque across an open differential, or application of an induced torque to one or two selected wheels to correct an under- or oversteering condition, may be classified as controlled brake performance. Statistics from the field indicate the majority of braking events stem from base brake applications and as such can be classified as the single most important function.
Technical Paper

Influence of Chassis Characteristics on Sustained Roll, Heave and Yaw Oscillations in Dynamic Rollover Testing

2005-04-11
2005-01-0398
In dynamic rollover tests many vehicles experience sustained body roll oscillations during a portion of road edge recovery maneuver, in which constant steering angle is maintained. In this paper, qualitative explanation of this phenomenon is given and it is analyzed using simplified models. It is found that the primary root cause of these oscillations is coupling occurring between the vehicle roll, heave and subsequently yaw modes resulting from suspension jacking forces. These forces cause vertical (heave) motions of vehicle body, which in turn affect tire normal and subsequently lateral forces, influencing yaw response of vehicle. As a result, sustained roll, heave and yaw oscillations occur during essentially a steady-state portion of maneuver. Analysis and simulations are used to assess the influence of several chassis characteristics on the self-excited oscillations. The results provide important insights, which may influence suspension design.
Technical Paper

Mechanical Properties of Friction Materials and the Effect on Brake System Stability

2003-05-05
2003-01-1619
This study utilizes complex eigenvalue analysis to investigate the sensitivity of dynamic system stability to the mechanical properties of the friction material. The friction material is modeled as a transverse isotropic material exhibiting different in-plane and out-of-plane moduli. Parametric studies are performed to evaluate system stability under various combinations of these properties. The initial analysis results show good correlation with laboratory testing for both squeal frequency and mode shape. Additional laboratory testing reveals a change in friction material can have a significant effect on the noise performance of a system. Analysis was performed with corresponding friction materials and the results were directionally consistent. This helped to validate the analysis model and establish confidence in the analysis results. In general, for the specific system considered, decreasing both in-plane and out-of-plane moduli encouraged system stability.
Technical Paper

Overview of Remote Diagnosis and Maintenance for Automotive Systems

2005-04-11
2005-01-1428
Advances in wireless communications, model-based diagnostics, human-machine interfaces, electronics and embedded system technologies have created the foundation for a dramatic shift in the way the vehicles are diagnosed and maintained. These advances will enable vehicle diagnosis and maintenance to be performed remotely while the vehicle is being driven. There also has been recent strong consumer interest in Remote Diagnosis and Maintenance (RD&M). As a consequence, RD&M is drawing increased attention in the automotive industry. This paper provides the current status of vehicle remote diagnosis and maintenance, analyses the potential features of RD&M and their significance, and discusses how next generation automotive products could benefit from research and development in this area.
X