Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Development of High Performance Catalyst Temperature Sensor for NOx Catalyst Control

1999-03-01
1999-01-0615
The development of new systems to reduce exhaust gases is being investigated in response to OBD-II regulations and regulations all over the world relating to the introduction of low exhaust gas vehicles (LEV, ULEV, STEP3, STEP4). We have developed a highly responsive thermistor type catalyst temperature sensor that is very accurate, highly heat resistant, has a wide detection range, and that can be used in exhaust gas cleansing systems. The key technologies used in this new catalyst temperature sensor are: 1 Wide detection range: The thermistor is of a network construction that comprises a semi-conductor with a new Y-Cr-Mn perovskite crystal structure and an insulator. The temperature range can be set by changing the proportions of semi-conductor and insulator.
Technical Paper

Development of Non-Adhesive Acrylic Rubber for Engine Oil Filter

1998-02-01
980990
In recent years, the use of acrylic rubber has grown because of improved low temperature performance and heat resistance. Acrylicrubber is now being adopted as a replacementof NBR because it has good oil and heat resistance. One special feature inherent toacrylic rubber is that if it is in contact withmetal, upon heating, it will adhere to the metal. This adhesion would not be a problem with a fixed O-ring; however, in the case of an oilfilter (O/F) gasket which is regularly changed,the rubber which remains due to adhesion couldbe problematic for sealing. In the past, this problem was overcome by utilizing a coating, such as silicone, on the rubber surface, although this adds another step to the rubber process. Therefore, we developed a new method to prevent the adhesion of acrylic rubber by analyzing the mechanism by which the acrylic rubber adheres to a metal surface.
Technical Paper

Development of Planar Oxygen Sensor

2001-03-05
2001-01-0228
In preparation for compliance with California's SULEV standard and Euro STAGE 4 standard, which will take effect in 2002 and 2005, respectively, we have developed a laminated planar oxygen sensor. The developed sensor has the following characteristics: high thermal conductivity and superior dielectric characteristic, due to direct joining of the heater element alumina substrate and the sensor element zirconia electrolyte; low heat stress at temperature rise, due to optimized heater design; superior sensor protection from water droplets, and improved sensor response, due to optimized arrangement of intake holes in the sensor cover. With these characteristics, the developed oxygen sensor can be activated in 10 seconds after cold start. This report describes the technologies we used to develop the early-activation oxygen sensor.
Technical Paper

Development of Plastic Pulley for Automotive Air Conditioner Compressor

2002-03-04
2002-01-0603
The automotive industry has increasingly been focusing its efforts on vehicle part weight reduction, with the aim of improving fuel efficiency as an environmental protection measure. As part of these efforts, the industry has actively been developing plastic pulleys to replace conventional steel pulleys. Of the various pulleys used in vehicles, the air conditioner (A/C) compressor pulley is exposed to the harshest working environment. We therefore investigated towards development of a plastic pulley for A/C compressor application. Required material properties were first identified on the basis of required product characteristic values. As a result, a phenolic resin material was developed that is superior in heat resistance one of the most important properties among those identified. Using the material, we succeeded in developing an A/C compressor plastic pulley, achieving approximately 50% weight reduction compared to conventional steel pulleys.
Journal Article

Development of an Electronic Resin Throttle Body

2011-08-30
2011-01-2029
The need to improve fuel consumption by saving the weights of automobile parts is growing from the viewpoint of global warming mitigation. In the case of a throttle body for controlling the air flow volume into an engine, it is important to achieve a high dimensional accuracy of the valve-bore gap in the state of closed valve. In fact, most throttle bodies are made of precision-machined metal. Therefore, resin throttle bodies are drawing attention as a lightweight alternate. However, in comparison with metal throttle bodies, resin throttle bodies have two potential disadvantages that should be solved prior to productization. The first one is greater air leakage in the state of closed valve, and the second one is smaller heat conduction for unfreezing the valve in a frigid climate. We have developed an electronic resin throttle body that has overcome the above-mentioned disadvantages.
X