Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparative Analysis of Combustion Process, Performance and Exhaust Emissions in Diesel Engine Fueled with Blends of Jatropha Oil-Diesel Fuel and Jatropha Oil-Kerosene

2015-11-17
2015-32-0797
A comparative study was performed by use of blends of Jatropha oil-diesel fuel and Jatropha oil-kerosene in order to investigate the feasibility of direct utilization of Jatropha oil in a DI diesel engine. Experimental results at low load demonstrated that mixing 60 vol.% of Jatropha oil into both diesel fuel and kerosene gave less impact on indicated thermal efficiency, whereas further increase of Jatropha oil deteriorated it. Jatropha oil-kerosene decreased particulate matter compared to Jatropha oil-diesel fuel, although particulate matter increased with the increase of Jatropha oil fraction. At partial load where double injection was applied, mixing 80 vol.% of Jatropha oil gave no significant impact on indicated thermal efficiency, exhaust gas emissions and particulate matter and no significant difference was observed between diesel fuel blends and kerosene blends.
Technical Paper

A Study of Particulate Formation on the Combustion Chamber Wall

1991-02-01
910488
In the small high speed DI diesel engines, wall quenching plays an important role on the particulate formation process. In order to clarify the particulate formation process, authors have analyzed the deposit on the combustion chamber wall, which are the results of the wall quenching. Deposit is sampled at 22 locations on the combustion chamber wall. On the wall of the piston cavity, dry and SOF deposits generate. The deposit quantity is the highest on the side surface of the cavity, but SOF ratio is the smallest in the cavity.
Technical Paper

Application of the Contribution Analysis of the Vibration Source using Partial Coherence

2006-10-31
2006-01-3464
Operator comfort is an important design criteria for hydraulic excavators during working and idling conditions. An engine, a cooling fan motor and a pump are installed on a hydraulic excavator. It is hard to identify the vibration contribution to a response because three sources are synchronizingly working. This paper describes the use of partial coherence measurement techniques for source identification. And it is examined to reduce the vibration of the source component identified by the partial coherence results. Finally, it is verified that the response acceleration is effectively decreased by reducing the vibration of the identified component.
Technical Paper

Artificial Control of Diesel Spray and Flame Feature by using Dual-component Fuel

2015-09-01
2015-01-1916
Fuel design approach has been proposed as the control technique of spray and combustion processes in diesel engine to improve thermal efficiency and reduce exhaust emissions. In order to kwow if this approach is capable of controlling spray flame structure and interaction between the flame and a combustion chamber wall, the present study investigated ignition and flame characteristics of dual-component fuels, while varying mixing fraction, fuel temperature and ambient conditions. Those characteristics were evaluated through chemiluminescence photography and luminous flame photography. OH radical images and visible luminous flame images were analyzed to reveal flame shape aspect ratio and its fractal dimension.
Technical Paper

Characteristics of Intermediate Products Generated During Diesel Combustion by Means of Total Gas Sampling

2004-10-25
2004-01-2923
It is very significant to take the intermediate products in diesel combustion for understanding the generation of exhaust emissions like SOF, dry soot and so on. The products generated in a constant volume combustion chamber were sampled by pricking a sheet of polyester film installed in the chamber to freeze the chemical reaction. The gas was analyzed by a gas chromatography. The fuel used was n-heptane. It is able to explain the generation of exhaust emissions by the experimental results. The other objective is to simulate the intermediate products. It is capable of explaining the relation between the simulated and experimental results.
Technical Paper

Combustion Observation of OSKA-DH Diesel Engine by High-Speed Photography and Video System

1996-05-01
961159
The OSKA-DH diesel engine employed a unique system (hereafter called OSKA system) which is composed of a single-hole fuel injector, an impinging disk and a re-entrant type combustion chamber. This study is concerned with the combustion observation of both OSKA-DH diesel engine and conventional DI diesel engine by the high-speed photography and video system. This video system enables us to take combustion photographs under the warm-up condition of the engine. From the observation of those photographs, the OSKA-DH engine shows the shorter ignition delay compared with a DI diesel engine and the combustion flame of OSKA-DH diesel engine are concentrated in the center of the combustion chamber and a relatively monotonous flame intensity are observed. THE AUTHORS HAVE DEVELOPED a new type of Direct Injection Stratified Charge Engine called “Direct Fuel Injection Impingement Diffusion Stratified Charge System” (hereafter called OSKA System).
Technical Paper

Construction of Sound Source Model for Diesel Engine Using New Method for Selecting Optimal Field Points in Inverse-Numerical Acoustic Analysis

2017-06-05
2017-01-1871
This paper describes new method for selecting optimal field points in Inverse-Numerical Acoustic analysis (INA), and its application to construction of a sound source model for diesel engines. INA identifies the surface vibration of a sound source by using acoustic transfer functions and actual sound pressures measured at field points located near the sound source. When measuring sound pressures with INA, it is necessary to determine the field point arrangement. Increased field points leads to longer test and analysis time. Therefore, guidelines for selecting the field point arrangement are needed to conduct INA efficiently. The authors focused on the standard deviations of distance between sound source elements and field points and proposed a new guideline for optimal field point selection in our past study. In that study, we verified the effectiveness of this guideline using a simple plate model.
Technical Paper

Detailed Kinetic Modeling and Laser Diagnostics of Soot Formation Process in Diesel Jet Flame

2004-03-08
2004-01-1398
This work investigates the soot formation process in diesel jet flame using a detailed kinetic soot model implemented into the KIVA-3V multidimensional CFD code and 2D imaging by use of time-resolved laser induced incandescence (LII). The numerical model is based on the KIVA code which is modified to use CHEMKIN as the chemistry solver using Message Passing Interface (MPI). This allows for the chemical reactions to be simulated in parallel on multiple CPUs. The detailed soot model used is based on the method of moments, which begins with fuel pyrolysis, followed by the formation of polycyclic aromatic hydrocarbons, their growth and coagulation into spherical particles, and finally, surface growth and oxidation of the particles. The model can describe the spatial and temporal characteristics of soot formation processes such as soot precursors distributions, nucleation rate and surface reaction rate.
Technical Paper

Development of Low NOx Emission Diesel Engine by Impingment of Fuel Jet

1992-09-01
921645
This study is concerned with development of a new type of Diesel engine by impingement of fuel jet. The impinging part is installed on the cylinder head (OSKA-DH), against which the fuel jet is injected to spread and form fuel-air mixture. As a fundamental study on the mixture formation process, the observation of the impinged fuel jet was studied by using a pressurized vessel. High-speed combustion photographs of the OSKA and DI Diesel engine were also taken by using the experimental transparent engine. A single cylinder 4 stroke cycle prototype OSKA-DH engine (ø 118 x 108 mm) was developed. Pintle type single hole fuel injector is used and relatively low opening pressure of 15.3 MPa is employed. The re-entrant type combustion chamber and relatively high compression ratio of 20.4: 1 are employed. Experiments with a single cylinder proto-type engine showed that the lower NOx and smoke emissions compared with the conventional DI diesel engine.
Technical Paper

Development of a direct-injection diesel engine with mixture formation by fuel spray impingement

2000-06-12
2000-05-0102
The mixture formation by fuel spray impingement (OSKA system) was applied to a small direct-injection diesel engine in order to reduce the wall quenching- induced emissions, i.e., the emissions of THC and soluble organic fractions (SOF). Experiments were carried out using a single-cylinder engine, fitted with various piston cavity geometries, ran under a wide range of compression ratios and fuel injection specifications. The piston cavity was designed as a centrally located reentrant type. The combination of the high squish flow and the weak penetration of the OSKA spray was very effective in reducing harmful emissions. A short ignition delay, under the retarded fuel injection timing, was obtained because of the high compression ratio. The OSKA DI diesel engine showed reduced NOx, smoke, and THC emissions without deterioration of the fuel consumption compared to modern DI diesel engines used in automotive applications.
Technical Paper

Effect of ADOIL TAC Additive on Diesel Combustion

1991-11-01
912555
Some papers on the combustion in a diesel engine have been already presented to discuss the effect of the additive called ADOIL TAC. A bottom view DI diesel engine driven at 980rpm with no load was used in the experiment presented here, in order to make clear this effect. JIS second class light diesel fuel oil was injected through a hole nozzle at the normal test run. The additive was intermixed 0.01 vol. % in this fuel oil, in the experiments to compare with the normal combustion. The flame was taken by direct high-speed photography. Profiles of flame temperature and KL were detected on the film by image processing, applying the two-color method. Soot was visualized by high-speed laser shadowgraphy, and the heat release rate was calculated using the cylinder pressure diagram. Discussion on the effect of the additive on the combustion phenomena was made by using all the data.
Technical Paper

Effect of Operational Condition on PM in Exhausted Gas through CI Engine

2007-10-29
2007-01-4077
The particulate matters (PM) containing in the exhaust gas through a CI engine affects strongly the human health. Thus, it is very significant to measure the mechanism of PM itself generation for actualization of a clean CI engine. On the standpoint mentioned above, the authors carried out the experiments of the characteristics of PM generated from a small high speed DI CI engine with a single cylinder. The variables were the equivalence ratio, the injection timing, the EGR rate and the sort of fuel. As a result, the effect of experimental condition on the distribution of PM is clear through experiments.
Technical Paper

Effects of Ambient Temperature and Oxygen Concentration on Soot Behavior in Diesel Flame

2005-09-11
2005-24-007
This paper describes the soot behavior in a diesel flame. The experiments were carried out in a constant volume chamber with quiescent atmosphere. Parameters were the ambient temperature and the oxygen concentration. The integrated image of flame was taken, the natural emission of flame was detected and the KL factor was found by means of classical technique of laser light extinction. The results were discussed by use of the apparent rate of heat release. As a result, the ignition delay and the vortex with large scale generated in a diesel spray affect the soot behavior in a diesel flame.
Technical Paper

Effects of Cooling Water Temperature on Particulate Emissions from a Small High Speed DI Diesel Engine

1991-02-01
910740
Authors have experimented the effects of cooling water temperature on the particulate emission characteristics from a high speed DI diesel engines. A single cylinder small high speed DI diesel engine is operated under various engine speed and load conditions. Cooling water temperature is varied from 313 K (40 °C) to 363 K (90 °C). Particulate is collected using a single stage full size dilution tunnel. Dry soot and SOF emissions are measured, as well as total particulate. SOF increases when the cooling water temperature decreases, as well as HC increases. SOF also increases as load decreases. This suggests that the SOF emits at the cold starting and warming up periods. This also suggests that the SOF can be reduced by increasing cooling water temperature. IT IS IMPORTANT TO CLARIFY the effects of cooling water temperature on the particulate emission.
Technical Paper

Effects of Flame Lift-Off and Flame Temperature on Soot Formation in Oxygenated Fuel Sprays

2003-03-03
2003-01-0073
Considering the bell-shaped temperature dependence of soot particle formation, the control of flame temperature has a possibility to drastically suppress of soot formation. Furthermore, oxygenated fuels are very effective on soot reduction, and the use of these kinds of fuels has a potentiality for smokeless diesel combustion. In this paper, the effects of flame lift-off and flame temperature on soot formation in oxygenated fuel sprays were experimentally investigated using a constant volume combustion vessel which simulated diesel engine conditions. The diffusion flame lift-off length was measured in order to estimate the amount of the oxygen entrained upstream of the flame lift-off length in the fuel jet. This was determined from time-averaged OH chemiluminescence imaging technique. Also, the flame temperature and soot concentration were simultaneously evaluated by means of two-color method.
Technical Paper

Effects of Mixedness and Ignition Timings on PCCI Combustion with a Dual Fuel Operation

2011-08-30
2011-01-1768
A dual fuel operation with different reactivity fuels has the possibility of optimizing performance and emissions in premixed charge compression ignition engines by controlling the spatial concentration and distribution of both fuels. In the present study, n-heptane and i-octane were independently injected through two different injectors. In-cylinder pressure analysis and emissions measurement were performed in a compression ignition engine. Injection timings, fuel quantity ratio between the injections were changed for the two cases, in which one fuel was injected using a port fuel injection system while the other was directly injected into the cylinder, in order to drastically vary mixture distributions and ignition timings. In addition, an optical diagnostic was performed in a rapid compression and expansion machine to develop an understanding of the ignition processes of the two mixtures.
Technical Paper

Effects of Spray Internal EGR Using CO2 Gas Dissolved Fuel on Combustion Characteristics and Emissions in Diesel Engine

2020-01-24
2019-32-0592
We have proposed the application of Exhaust Gas Recirculation (EGR) gas dissolved fuel which might improve spray atomization through effervescent atomization instead of high injection pressure. Since EGR gas is included in the spray of EGR gas dissolved fuel, it directly contributes to combustion, and the further reduction of NOx emissions is expected rather than the conventional external EGR. In our research, since highly contained in the exhaust gas and highly soluble in the fuel, CO2 was selected as the dissolved gas to simulate EGR gas dissolved. In this paper, the purpose is to evaluate the influence of the application of CO2 gas dissolved fuel on the combustion characteristics and emission characteristics inside the single cylinder, direct injection diesel engine. As a result, by use of the fuel, smoke was reduced by about 50 to 70%, but NOx reduction does not have enough effect.
Technical Paper

Exhaust Emission Through Diesel Combustion of Mixed Fuel Oil Composed of Fuel with High Volatility and that with Low Volatility

2004-06-08
2004-01-1845
The mixed fuel composed of two kinds of fuel oil whose boiling temperature is different each other forms the fine spray with minute droplets when its condition crosses over the two-phase region. It is expected that the fuel with low volatility dominates the ignition delay and that with high volatility does the generation of particulate matter. The experiments were carried out in a rapid compression and expansion machine and in an actual high-speed small sized diesel engine by use of this kind of fuel. The experimental results prove this expectation.
Technical Paper

Experimental Study on Unsteady Jet Impinging on the Projection on a Wall

1990-02-01
900607
The mixture formation process plays an important role on combustion in the direct injection stratified charge engine. A new mixture formation technology named OSKA has been developed for direct injection stratified charge SI engines. The OSKA process has the potential to yield better fuel economy and cleaner emissions. However, the mixture formation process has not been clarified completely, and detailed studies of the mixture formation process with the OSKA technology are needed. As a fundamental study on the OSKA mixture formation, time and space resolved distribution is obtained on concentration and on pressure in the unsteady gas jet, which discharges with constant injection pressure into a quiescent atmosphere and impinges on a projection placed on a wall.
Technical Paper

Exploratory Development of Low NOx and High Combustion Load Combustor

1990-09-01
901604
A low emission and high combustion load combustor is developed. The combustor reduces both NOx and unburnt fractions using rich-lean staged combustion. NOx is suppressed by fuel-rich combustion in the primary combustion chamber. Unburnt fraction is oxidized by the transition from rich to lean combustion. To avoid NOx formation, residence time nearby stoichiometry is shortened. NOx is less than 24.8 ppm(16 % O2 equivalence) or 2.26 g/kg throughout the experiments. Combustion efficiency is high regardless of the wide operating range. Specific combustion load is up to 33.6 MW/m3 without excessive NOx emission under atmospheric air condition.
X