Refine Your Search

Topic

Author

Search Results

Technical Paper

A Study of Fuel Auto-ignitability on Premixed Compression Ignition Characteristics

2008-04-14
2008-01-0062
It has been clarified that diesel fuel properties have a great effect on the exhaust emissions and fuel consumption of a conventional diesel combustion regime. And as other diesel combustion regimes are applied in order to improve exhaust emissions and fuel consumption, it can be supposed that the fuel properties also have significant effects. The purpose of this study is to propose the optimum diesel fuel properties for a premixed compression ignition (PCI) combustion regime. In this paper, the effect of the auto-ignitability of diesel fuels on exhaust emissions and fuel consumption was evaluated using a heavy-duty single-cylinder test engine. In all experiments, fuels were injected using an electronically controlled, common-rail diesel fuel injector, and most experiments were conducted under high EGR conditions in order to reduce NOx emissions.
Technical Paper

A Study of PM Emission Characteristics of Diesel Vehicle Fueled with GTL

2007-01-23
2007-01-0028
In this study, diesel exhaust emission characteristics were investigated as GTL (Gas To Liquid) fuel was applied to a heavy-duty diesel truck which had been developed to match a Japanese new long-term exhaust emission regulation (NOx < 2.0 g/kWh, PM < 0.027 g/kWh). The results in this study show that although the test vehicle has advanced technologies (e.g. high pressure fuel injection, oxidation catalyst, and urea-SCR aftertreatment system, etc.) which are applied to reduce diesel emissions, the neat GTL fuel has a great advantage to reduce particulate matter emissions and poly aromatic hydrocarbons. And regarding nano-size PM emissions, nuclei mode particles emitted during idling are significantly decreased by using the GTL fuel.
Technical Paper

Application of Transfer Path Analysis (TPA) to a Mechanical Structure with a Variety of Transfer Paths

2016-09-27
2016-01-8101
In a typical mechanical product such as an automobile or construction machinery, it is important to identify deformation modes, for which experiments and analyses can result in significant improvements. It is also important to consider how to improve the structure with high rigidity by using a technique such as the strain energy method in conventional design and development. However, the abovementioned method often generates conflicting results with regard to weight saving and cost reduction of development requirements. Transfer path analysis (TPA) using the finite element method (FEM) is an effective way to reduce noise and vibration in the automobile with respect to these issues. TPA can reveal the transfer path from the input to the response of the output point and the contribution of the path, and to efficiently consider improved responses.
Technical Paper

Artificial Control of Diesel Spray and Flame Feature by using Dual-component Fuel

2015-09-01
2015-01-1916
Fuel design approach has been proposed as the control technique of spray and combustion processes in diesel engine to improve thermal efficiency and reduce exhaust emissions. In order to kwow if this approach is capable of controlling spray flame structure and interaction between the flame and a combustion chamber wall, the present study investigated ignition and flame characteristics of dual-component fuels, while varying mixing fraction, fuel temperature and ambient conditions. Those characteristics were evaluated through chemiluminescence photography and luminous flame photography. OH radical images and visible luminous flame images were analyzed to reveal flame shape aspect ratio and its fractal dimension.
Technical Paper

CFD Study of an LPG DI SI Engine for Heavy Duty Vehicles

2002-05-06
2002-01-1648
This work aimed to develop an LPG fueled direct injection SI engine, especially in order to improve the exhaust emission quality while maintaining high thermal efficiency comparable to a conventional engine. In-cylinder direct injection engines developed recently worldwide utilizes the stratified charge formation technique at low load, whereas at high load, a close-to-homogeneous charge is formed. Thus, compared to a conventional port injection engine, a significant improvement of fuel consumption and power can be achieved. To implement such a combustion strategy, the stratification of mixture charge is very important, and an understanding of its combustion process is also inevitably necessary. In this work, a numerical simulation was performed using a CFD code (KIVA-3), where the shape of a combustion chamber, swirl intensity, injection timing and duration, etc. were varied and their effects on the mixture formation and combustion process were investigated.
Technical Paper

Characteristics of Aldehydes and VOCs Emission from Off-road Engines

2006-11-13
2006-32-0023
In this study, measurement methods of aldehydes and volatile organic compounds (VOCs) from off-road engine have been investigated. Also, their emission characteristics have been evaluated. By using high-performance liquid chromatograph (HPLC), aldehydes could be measured with small variation. Major aldehydes from off-road engine are formaldehyde and acetaldehyde. Total aldehydes emission is not necessarily low compared to THC emission. The emission characteristics of aldehydes are similar to that of CO, THC and PM. For VOCs sampling, sampling tube with absorbent was better than sampling bag because some kinds of VOCs tend to become absorbed on the sampling bag. Except for 1,3-butadiene, VOCs could be measured with small variation by using gas chromatography-mass spectrometer (GC-MS). Benzene, toluene and xylene were major species found in VOCs. The emission characteristics of VOCs were also similar to ones of CO, THC and PM.
Technical Paper

Characteristics of Intermediate Products Generated During Diesel Combustion by Means of Total Gas Sampling

2004-10-25
2004-01-2923
It is very significant to take the intermediate products in diesel combustion for understanding the generation of exhaust emissions like SOF, dry soot and so on. The products generated in a constant volume combustion chamber were sampled by pricking a sheet of polyester film installed in the chamber to freeze the chemical reaction. The gas was analyzed by a gas chromatography. The fuel used was n-heptane. It is able to explain the generation of exhaust emissions by the experimental results. The other objective is to simulate the intermediate products. It is capable of explaining the relation between the simulated and experimental results.
Technical Paper

Cooperative Steer Control on Motorcycle between Rider and Active Support Torque

2009-11-03
2009-32-0060
In this research, we aim at the construction of a steering cooperation-type front-wheel steering control system to reduce the rider's steering load by stabilizing the behavior of the motorcycle when turbulence in the direction of a roll occurs during low-speed driving. Finally, a front-wheel steering control system that considers cooperation with a rider's steering based on the experimental result is constructed, and the utility is verified by simulation.
Technical Paper

Detailed Kinetic Modeling and Laser Diagnostics of Soot Formation Process in Diesel Jet Flame

2004-03-08
2004-01-1398
This work investigates the soot formation process in diesel jet flame using a detailed kinetic soot model implemented into the KIVA-3V multidimensional CFD code and 2D imaging by use of time-resolved laser induced incandescence (LII). The numerical model is based on the KIVA code which is modified to use CHEMKIN as the chemistry solver using Message Passing Interface (MPI). This allows for the chemical reactions to be simulated in parallel on multiple CPUs. The detailed soot model used is based on the method of moments, which begins with fuel pyrolysis, followed by the formation of polycyclic aromatic hydrocarbons, their growth and coagulation into spherical particles, and finally, surface growth and oxidation of the particles. The model can describe the spatial and temporal characteristics of soot formation processes such as soot precursors distributions, nucleation rate and surface reaction rate.
Technical Paper

Disturbance Rejection Control in Motorcycle that Considers Cooperativeness with the Rider’s Driving Operation

2008-09-09
2008-32-0055
It’ll be expected that tandem riders increase in the future. So, there is a need to improve the motorcycle stability of tandem riding from the perspectives of safety and comfort. In this research, we focus on tandem riding at low speed because the motorcycle especially becomes unstable. In order to improve the stability of a motorcycle after disturbance is input by the passenger’s posture change, we design a front wheel steer control system that assists the rider’s driving operation. And we simulate it. It is necessary to consider cooperation with the rider’s driving operation. In this study, as a means to consider the cooperative control of the man-machine system, the fuzzy logic was applied to this system.
Technical Paper

Effect of ADOIL TAC Additive on Diesel Combustion

1991-11-01
912555
Some papers on the combustion in a diesel engine have been already presented to discuss the effect of the additive called ADOIL TAC. A bottom view DI diesel engine driven at 980rpm with no load was used in the experiment presented here, in order to make clear this effect. JIS second class light diesel fuel oil was injected through a hole nozzle at the normal test run. The additive was intermixed 0.01 vol. % in this fuel oil, in the experiments to compare with the normal combustion. The flame was taken by direct high-speed photography. Profiles of flame temperature and KL were detected on the film by image processing, applying the two-color method. Soot was visualized by high-speed laser shadowgraphy, and the heat release rate was calculated using the cylinder pressure diagram. Discussion on the effect of the additive on the combustion phenomena was made by using all the data.
Technical Paper

Effect of Operational Condition on PM in Exhausted Gas through CI Engine

2007-10-29
2007-01-4077
The particulate matters (PM) containing in the exhaust gas through a CI engine affects strongly the human health. Thus, it is very significant to measure the mechanism of PM itself generation for actualization of a clean CI engine. On the standpoint mentioned above, the authors carried out the experiments of the characteristics of PM generated from a small high speed DI CI engine with a single cylinder. The variables were the equivalence ratio, the injection timing, the EGR rate and the sort of fuel. As a result, the effect of experimental condition on the distribution of PM is clear through experiments.
Technical Paper

Effects of Ambient Temperature and Oxygen Concentration on Soot Behavior in Diesel Flame

2005-09-11
2005-24-007
This paper describes the soot behavior in a diesel flame. The experiments were carried out in a constant volume chamber with quiescent atmosphere. Parameters were the ambient temperature and the oxygen concentration. The integrated image of flame was taken, the natural emission of flame was detected and the KL factor was found by means of classical technique of laser light extinction. The results were discussed by use of the apparent rate of heat release. As a result, the ignition delay and the vortex with large scale generated in a diesel spray affect the soot behavior in a diesel flame.
Technical Paper

Effects of Flame Lift-Off and Flame Temperature on Soot Formation in Oxygenated Fuel Sprays

2003-03-03
2003-01-0073
Considering the bell-shaped temperature dependence of soot particle formation, the control of flame temperature has a possibility to drastically suppress of soot formation. Furthermore, oxygenated fuels are very effective on soot reduction, and the use of these kinds of fuels has a potentiality for smokeless diesel combustion. In this paper, the effects of flame lift-off and flame temperature on soot formation in oxygenated fuel sprays were experimentally investigated using a constant volume combustion vessel which simulated diesel engine conditions. The diffusion flame lift-off length was measured in order to estimate the amount of the oxygen entrained upstream of the flame lift-off length in the fuel jet. This was determined from time-averaged OH chemiluminescence imaging technique. Also, the flame temperature and soot concentration were simultaneously evaluated by means of two-color method.
Technical Paper

Effects of Spray Internal EGR Using CO2 Gas Dissolved Fuel on Combustion Characteristics and Emissions in Diesel Engine

2020-01-24
2019-32-0592
We have proposed the application of Exhaust Gas Recirculation (EGR) gas dissolved fuel which might improve spray atomization through effervescent atomization instead of high injection pressure. Since EGR gas is included in the spray of EGR gas dissolved fuel, it directly contributes to combustion, and the further reduction of NOx emissions is expected rather than the conventional external EGR. In our research, since highly contained in the exhaust gas and highly soluble in the fuel, CO2 was selected as the dissolved gas to simulate EGR gas dissolved. In this paper, the purpose is to evaluate the influence of the application of CO2 gas dissolved fuel on the combustion characteristics and emission characteristics inside the single cylinder, direct injection diesel engine. As a result, by use of the fuel, smoke was reduced by about 50 to 70%, but NOx reduction does not have enough effect.
Technical Paper

Evaluation of Feeling of Pulse for Cruiser-type Motorcycle

2009-11-03
2009-32-0131
This paper describes the relationship between the rider's evaluation of feeling of pulse and the seat vibration of the cruiser-type motorcycle. A simulated running condition was created to measure the seat vibration and engine speed. Next, the seat vibration was reproduced on the hydrodynamic shaker. Finally, we examined the influence of which order of rotational speed effects evaluation of feeling of pulse in a forced vibration test. As a result, it is known that 0.5th and 1st orders of seat vibration contribute to evaluation of feeling of pulse near 1,500 to 2,000 rpm of engine rotation.
Technical Paper

Exhaust Emission Through Diesel Combustion of Mixed Fuel Oil Composed of Fuel with High Volatility and that with Low Volatility

2004-06-08
2004-01-1845
The mixed fuel composed of two kinds of fuel oil whose boiling temperature is different each other forms the fine spray with minute droplets when its condition crosses over the two-phase region. It is expected that the fuel with low volatility dominates the ignition delay and that with high volatility does the generation of particulate matter. The experiments were carried out in a rapid compression and expansion machine and in an actual high-speed small sized diesel engine by use of this kind of fuel. The experimental results prove this expectation.
Technical Paper

Fuel Design Concept for Low Emission in Engine Systems

2000-03-06
2000-01-1258
In previous our work, we revealed that the flash boiling process could improve remarkably the spray atomization for the pure substance-single component fuel in relation to the port-injected S.I. engines. Then, we applied this flash boiling spray to the Diesel spray process by the use of the two phase region formed between liquefied CO2 and n-Tridecane as the first step of fuel design concept. And the promoted atomization properties could be obtained in this mixed fuel concept. Further, we could obtain the simultaneous reduction of NO and soot emissions in Diesel engine exhaust due to the spray internal EGR effect and reburning of soot. As the second step, we proposed a novel fuel design concept for low exhaust emission and combustion control, relating to mixed and reformulated fuels with a lower boiling point fuel such as gasoline components or gas fuel and a higher boiling point fuel such as gas oil or heavy oil components to obtain the both advantages of their fuels for combustion.
Technical Paper

Fuel Design Concept for Low Emission in Engine Systems 4th Report: Effect of Spray Characteristics of Mixed Fuel on Exhaust Concentrations in Diesel Engine

2003-03-03
2003-01-1038
In this study, the novel fuel design concept has been proposed in order to realize the low emission and combustion control in engine systems. In this fuel design concept, the mixed fuels with a high volatility fuel (gasoline or gaseous fuel components) and a low volatility fuel (gas oil or fuel oil components) are used in order to improve the spray characteristics by flash boiling. In our previous papers on this study, the fundamental characteristics of spray and its combustion of mixed fuel were reported. In this paper, heat release and exhaust emission (smoke, NOx and THC) characteristics of single cylinder diesel engine operated with the mixed fuels were investigated under each load. The exhaust performance of diesel engine could be improved using mixed fuel, because fuel properties and spray characteristics were controlled by changing mixing fraction of the mixed fuel.
Technical Paper

Genetic Algorithms Optimization of Diesel Engine Emissions and Fuel Efficiency with Air Swirl, EGR,Injection Timing and Multiple Injections

2003-05-19
2003-01-1853
The present study extends the recently developed HIDECS-GA computer code to optimize diesel engine emissions and fuel economy with the existing techniques, such as exhaust gas recirculation (EGR) and multiple injections. A computational model of diesel engines named HIDECS is incorporated with the genetic algorithm (GA) to solve multi-objective optimization problems related to engine design. The phenomenological model, HIDECS code is used for analyzing the emissions and performance of a diesel engine. An extended Genetic Algorithm called the ‘Neighborhood Cultivation Genetic Algorithm’ (NCGA) is used as an optimizer due to its ability to derive the solutions with high accuracy effectively. In this paper, the HIDECS-NCGA methodology is used to optimize engine emissions and economy, simultaneously. The multiple injection patterns are included, along with the start of injection timing, and EGR rate.
X