Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Influence of the Flow Field on Flame Propagation in a Hydrogen-Fueled Internal Combustion Engine

2011-09-11
2011-24-0098
Flame propagation in an optically accessible hydrogen-fueled internal combustion engine was visualized by high-speed schlieren imaging. Two intake configurations were evaluated: low tumble with a tumble ratio of 0.22, corresponding to unmodified intake ports, and high tumble with a tumble ratio of 0.70, resulting from intake modification. For each intake configuration, fueling was either far upstream of the engine, with presumably no influence on the intake flow, or the fuel was injected directly early during the compression stroke from an angled single-hole injector, adding significant angular momentum to the in-cylinder flow. Crank-angle resolved schlieren imaging during combustion allowed deducing apparent flame location and propagation speed, which were then correlated with in-cylinder pressure measurements on a single-cycle basis. In a typical cycle, flame shape and convective displacement are strongly affected by the in-cylinder flow.
Journal Article

Mixture Formation in Direct Injection Hydrogen Engines: CFD and Optical Analysis of Single- and Multi-Hole Nozzles

2011-09-11
2011-24-0096
This paper describes the validation of a CFD code for mixture preparation in a direct injection hydrogen-fueled engine. The cylinder geometry is typical of passenger-car sized spark-ignited engines, with a centrally located injector. A single-hole and a 13-hole nozzle are used at about 100 bar and 25 bar injection pressure. Numerical results from the commercial code Fluent (v6.3.35) are compared to measurements in an optically accessible engine. Quantitative planar laser-induced fluorescence provides phase-locked images of the fuel mole-fraction, while single-cycle visualization of the early jet penetration is achieved by a high-speed schlieren technique. The characteristics of the computational grids are discussed, especially for the near-nozzle region, where the jets are under-expanded. Simulation of injection from the single-hole nozzle yields good agreement between numerical and optical results in terms of jet penetration and overall evolution.
X