Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

ATV THERMAL CONTROL: Architecture and Jules Verne First Flight Results

2009-07-12
2009-01-2474
After several years of development the first European Automated Transfer Vehicle (ATV) developed by ESA called Jules Verne completed successfully its seven-month ISS logistics mission. Launched the 9 March 2008 on an Ariane 5 launcher, the ATV performed the 3 April 2008 its rendezvous and docking to the International Space Station to which it remained attached for five months. This paper presents in a first part the ATV thermal control architecture based on a innovative active thermal control design built around 40 Variable Conductance Heat Pipes (VCHP) controlling the heat rejection and in a second part the in-flight thermal control behavior of the ATV Jules Verne observed during the seven months mission in both free flight and attached to ISS phases.
Technical Paper

Columbus Active Thermal Control System - Final Integration, Test and Mission Preparation

2007-07-09
2007-01-3030
Columbus has been delivered to Kennedy Space Center (KSC) in summer 2006 for final integration, test and mission preparation. In the frame of these “last” phase activities also the Active Thermal Control System (ATCS) had to be finalized and prepared for the launch resp. mission. Due to unexpected late failures resp. malfunctions detected on component/unit level of the ATCS, refurbishment, integration / exchange of the relevant components and re-testing of their system level functions had to be done. Moreover, the still outstanding system level fluid leakage test of the ATCS had to be revised and completed. In addition to the required late refurbishment, integration and test activities, in certain cases also operational workarounds had to be evaluated. They should help to cope with similar contingency situations during operation of the ATCS on-orbit.
Technical Paper

Columbus Environmental Control System Tests - Verification of ATCS and ECLSS Performance

2005-07-11
2005-01-3117
Verification of the Integrated Overall Thermal Mathematical Model (IOTMM) is one of the last tasks in the thermal and environmental control area of the Columbus module. For this purpose a specific test covering as well thermal-hydraulic performance tests as Environmental Control and Life Support (ECLS) cabin temperature control functions has been defined and performed on the european Columbus Protoflight Model (PFM) in Bremen in 2003. This Environmental Control System test was successful for all Active Thermal Control System (ATCS) related thermal-hydraulic functions and could provide sufficient data for a proper IOTMM correlation. However, it failed to verify the ECLS related functions as cabin temperature control and ventilation. Data, which have been generated during this first test, could not be used for a successful IOTMM correlation related to ECLS subsystem performance and modelling.
Technical Paper

Columbus Launch Preparation - Final System ATCS Tests Summary and Lessons Learned

2008-06-29
2008-01-2033
Final preparation and configuration of the Columbus module at the Kennedy Space Center (KSC) required the performance of system level tests with the Active Thermal Control System (ATCS). These tests represented the very last system level activities having been concluded on the Columbus module before handover to NASA for space shuttle integration. Those very last tests, performed with the ATCS comprised the final ATCS Leakage Test, the final calibration and adjustment of the Water Flow Selection Valves (WFSV) and Water On/Off Valves (WOOV) as well as a sophisticated ATCS Residual Air Removal test. The above listed tests have been successfully performed and test data evaluated for verification closeout as well as input delivery for operational Flight Rules and Procedures. Some of the above mentioned tests have been performed the first time hence, a succeeding lessons learned collection followed in order to improve the perspectives of future tests.
Technical Paper

Development of a Fabric for the External Protection of a Space Suit

1993-07-01
932101
During Extravehicular Activities (EVA) an astronaut has to be protected against various external factors ranging from mechanical hazards to solar radiation and micrometeoroids. An important element in this external protection is the outermost fabric layer. It has to ensure the mechanical protection of the pressure retention bladder and at the same time - by its thermooptical properties - plays an important role in the thermal control of the space suit. New weaving and knitting technologies enable the fabrication of so-called 3-D fabrics with interconnected layers and local variation of properties in one manufacturing step. By this a tailored design of protection properties is possible. A study has been performed to define concepts adapted for use on a European Space Suit. Different fabric samples were manufactured and tested, amongst others, for strength, flexibility, puncture and wear resistance, UV stability, flammability, out/offgassing and micrometeoroid protection effctiveness.
Technical Paper

Enhancing Lumped Parameter TMM Using Computational Fluid Dynamics and Scripting

2004-07-19
2004-01-2398
Lumped parameter models are extensively used to calculate the thermal state of structures in a defined environment. Such models rely on the correct estimation of thermal couplings between the thermal nodes. Frequently, such conductances are difficult to establish using standard methods or given correlations. This paper presents methods to determine linear bulk flow conductances and linear conductances due to conduction and convection using computational fluid dynamics (CFD). The methods take advantage of grids of finite elements or finite volumes to model the structure, and the solution of the Navier-Stokes equations using CFD. Conductances due to conduction are determined in two ways. First, the conductance is calculated by means of geometric and material property analysis. Second, a thermal case was applied to compute the conductance. The results were compared subsequently. Fluid and convective conductances were calculated applying thermal and fluid dynamics cases.
Technical Paper

Fully Operational FTIR Based Multi-Component Gas Analysis System for Spacecraft Cabin Air Monitoring

1998-07-13
981568
An advanced trace gas monitoring system for long duration manned space missions - such as the International Space Station - is discussed. The system proposed is a combination of a Fourier-Transform Infrared Spectrometer (FTIR) and a distributed ‘Smart Gas Sensor system (SGS). In a running multi-phase programme [1,2] the FTIR technology, applying novel analysis methods, has been demonstrated to handle multi-component gas measurements, including identification and quantification of 20 important trace gases in a mixture. In the current phase 3, initiated end of 1997, a fully operational FTIR technology demonstration model will be manufactured and tested. The SGS consists of an array of twenty electrically conductive polymer sensors supplemented with an array of quartz crystal microbalance sensors. The technology has been tested on the Russian MIR space station and is currently miniaturized into a second-generation flight model.
Technical Paper

MELFI Cooling Performance Characterization and Verification

2000-07-10
2000-01-2308
The Minus Eighty (Degrees Celsius) Laboratory Freezer for the International Space Station (MELFI) is one of the freezers developed by ESA on behalf of NASA. Peculiar requirements for that facility are the long-term storage at low temperature, the rapid freezing of specimen to the required temperature, the large cold volume (300 l) and the low power consumption. To verify those requirements before the manufacturing of the flight hardware, a dedicated test campaign was performed on a ground model. This paper will start with a system overview, showing the main features of MELFI. The test set-up as well as their results will be presented and discussed, with particular emphasis on the methods used to predict the on-orbit (0-gravity) behaviour, by avoiding the sample internal convection and dewar internal convection during the test execution.
Technical Paper

The Refrigerator/Freezer Rack (RFR)

2005-07-11
2005-01-2902
EADS SPACE Transportation has developed and qualified under ESA contract the Refrigerator/Freezer Rack (RFR) for use by NASA on-board the ISS. This paper will present a general overview of the RFR system design, the qualification test results and an outlook to potential future usage of the RFR.
Technical Paper

Thermal Testing of a Heat Switch for European Mars Rover

2009-07-12
2009-01-2573
A Heat Switch has been developed, namely a device able to autonomously regulate its own thermal conductance in function of the equipment dissipation and environmental heat sink conditions. It is based on a Loop Heat Pipe (LHP) technology, with a passive bypass valve which diverts the flow to the Compensation Chamber when needed for regulation purposes. The target application is the potential use on a Mars Rover thermal control system. The paper recalls the Heat Switch design, and reports the results of an extensive test campaign on the ground demonstrator. The performance of the device was found extremely satisfying, and often exceeded the system requirements.
X