Refine Your Search

Topic

Search Results

Journal Article

11 Reasons to Use Automated Metrology

2019-03-19
2019-01-1369
Aerospace structures manufacturers find themselves frequently engaged in large-scale 3D metrology operations, conducting precision measurements over a volume expressed in meters or tens of meters. Such measurements are often done by metrologists or other measurement experts and may be done in a somewhat ad-hoc fashion, i.e., executed in the most appropriate method according to the lights of the individual conducting the measurement. This approach is certainly flexible but there are arguments for invoking a more rigorous process. Production processes, in particular, demand an automated process for all such “routine” measurements. Automated metrology offers a number of advantages including enabling data configuration management, de-skilling of operation, real time input data error checking, enforcement of standards, consistent process execution and automated data archiving. It also reduces training, setup time, data manipulation and analysis time and improves reporting.
Technical Paper

5-Axis Flex Track Drilling Systems on Complex Contours: Solutions for Position Control

2013-09-17
2013-01-2224
Previous Flex Track drilling systems move along two parallel tracks that conform to the contour of a work piece surface. Until recently, applications have been limited to relatively simple surfaces such as the cylindrical mid-body fuselage join of a commercial aircraft. Recent developments in the state of the art have introduced the 5-axis variant which is capable of precision drilling on complex contours. This paper presents solutions to two positioning challenges associated with this added functionality: the ability to align the spindle axis normal to an angled drilling surface while maintaining accuracy in tool-point position, the ability to maintain synced motion between dual drives on complex track profiles.
Technical Paper

5-Axis Flex Track System

2012-09-10
2012-01-1859
Flex Track Systems are seeing increased usage in aerospace applications for joining large assemblies, such as fuselage sections. Previous systems were limited to work pieces that allowed the tracks to follow a gentle radius of curvature, limiting the locations where the system could be used. This paper describes a new 5-Axis Flex Track System developed to expand the usage of the systems, allowing them to process work pieces containing complex and irregular contours. Processing complex contours is accomplished through the addition of A and B axes providing normalization in multiple directions. These new systems are configured with the latest multi-function process capabilities allowing drilling, hole quality measurement, and temporary or permanent fastener installation.
Journal Article

Applied Accurate Robotic Drilling for Aircraft Fuselage

2010-09-28
2010-01-1836
Once limited by insufficient accuracy, the off-the-shelf industrial robot has been enhanced via the integration of secondary encoders at the output of each of its axes. This in turn with a solid mechanical platform and enhanced kinematic model enable on-part accuracies of less than +/−0.25mm. Continued development of this enabling technology has been demonstrated on representative surfaces of an aircraft fuselage. Positional accuracy and process capability was validated in multiple orientations both in upper surface (spindle down) and lower surface (spindle up) configurations. A second opposing accurate robotic drilling system and full-scale fuselage mockup were integrated to simulate doubled throughput and to demonstrate the feasibility of maintaining high on-part accuracy with a dual spindle cell.
Journal Article

Automated Metrology Solution to Reduce Downtime and De-Skill Tooling Recertification

2012-09-10
2012-01-1869
Wing and fuselage aircraft structures require large precise tools for assembly. These large jigs require periodic re-certification to validate jig accuracy, yet metrology tasks involved may take the tool out of service for a week or more and typically require highly specialized personnel. Increasing the time between re-certifications adds the risk of making out-of-tolerance assemblies. How can we reduce jig re-certification down time without increasing the risk of using out-of-tolerance tooling? An alternative, successfully tested in a prototype tool, is to bring automated metrology tools to bear. Specifically, laser tracker measurements can be automated through a combination of off-the-shelf & custom software, careful line-of-sight planning, and permanent embedded targets. Retro-reflectors are placed at critical points throughout the jig. Inaccessible (out of reach) tool areas are addressed through the use of low cost, permanent, shielded repeatability targets.
Technical Paper

Automated Riveting of C-130J Aft Fuselage Panels

2017-09-19
2017-01-2075
Electroimpact and Lockheed Martin have developed an automated drilling and fastening system for C-130J aft fuselage panels. Numerous design and manufacturing challenges were addressed to incorporate the system into Lockheed Martin’s existing manufacturing paradigm and to adapt Electroimpact’s existing line of riveting machines for manufacture of these legacy aircraft parts. Challenges to automation included design of a very long yet sufficiently rigid and lightweight offset riveting anvil for fastening around deep circumferential frames, automated feeding of very short, “square” rivets in which the length is similar to the head diameter, creation of part programs and simulation models for legacy parts with no existing 3d manufacturing data, and crash protection for the aircraft part from machine collisions, given the uncertainties inherent in the model and the unique geometry of the aircraft parts.
Technical Paper

Automatic Drilling and Fastening System for Large Aircraft Doors

2019-03-19
2019-01-1346
Electroimpact has developed a system for drilling and fastening of cargo door structures which efficiently addresses many of the manufacturing challenges that such parts present. Challenges to door automation include 1) the presence of an inner skin that must be processed, in addition to the outer skin, and 2) a stiff frame structure, which makes the clamping and drilling processes that are typical to automated fastening machines very unforgiving of any errors in workpiece positioning. In this case, the manufacturing cell was to be installed in an existing facility with very limited ceiling height, further complicating the system and process design. New methods were devised to solve these problems, and the solutions found will likely have utility in future applications.
Technical Paper

Automatic Tool Change System for Stringer Side Rivet and Bolt Anvils on a D-Frame or C-Frame Fuselage Fastening Machine

2017-09-19
2017-01-2080
Manually changing stringer-side tooling on an automatic fastening machine is time consuming and can be susceptible to human error. Stringer-side tools can also be physically difficult to manage because of their weight, negatively impacting the experience and safety of the machine operator. A solution to these problems has recently been developed by Electroimpact for use with its new Fuselage Skin Splice Fastening Machine. The Automatic Tool Changer makes use of a mechanically passive gripper system capable of securely holding and maneuvering twelve tools weighing 40 pounds each inside of a space-saving enclosure. The Automatic Tool Changer is mounted directly to the stringer side fastening head, meaning the machine is capable of changing tools relatively quickly while maintaining its position on the aircraft panel with no machine operator involvement.
Video

Automating AFP Tuning Using a Laser Sensor

2012-03-22
Electroimpact Automatic Fiber Placement (AFP) machines lay-up composite parts by accurately placing carbon fiber tow (strips of impregnated carbon fiber) on a mould. In order to achieve high accuracy at high speeds, the processes of feeding and cutting tows must be tuned. Historically, the tuning has been a time-consuming, manual process. This paper will present a methodology to replace manual measurements with an automated laser, improve measurement speed by an order of magnitude, improve accuracy from +/? 0.020? (manual) to +/? 0.015? (laser), and eliminate human error. Presenter Joshua Cemenska, Electroimpact Inc.
Technical Paper

Coated Rivet Dies: A Dramatic Improvement in Rivet Interference Profile

2016-09-27
2016-01-2084
Successfully riveting aerospace fatigue-rated structure (for instance, wing panels) requires achieving rivet interference between a minimum and a maximum value in a number of locations along the shank of the rivet. In unbalanced structure, where the skin is much thicker than the stringer, this can be particularly challenging, as achieving minimum interference at the exit of the skin (D2) can often be a problem without exceeding the maximum interference at the exit of the stringer (D4). Softer base materials and harder, higher-strength rivets can compound the problem, while standard manufacturing variations in hardness of part and rivet materials can cause repeatability issues in the process. This paper presents a solution that has been successfully implemented on a production commercial aircraft. The application of a special coating on the stringer side die dramatically reduces interference at the exit of the stringer, which in some instances resulted in a reduction of over 38%.
Technical Paper

Development of a Multi Spindle Flexible Drilling System for Circumferential Splice Drilling Applications on the 777 Airplane

2008-09-16
2008-01-2298
Flex Track Drilling systems are being used increasingly in aerospace applications providing low cost, highly efficient automated drilling systems. Certain applications like circumferential splice drilling on large size airplane fuselages require multi spindle flex track systems working in tandem to meet production efficiency requirements. This paper discusses the development of a multi spindle flex track drilling system for a circumferential splice drilling on the 777 airplane. The multi spindle system developed uses a variety of flex track carriages attached to the flexible vacuum tracks to allow for offset or wide inside drilling. Segmented machine programmes allow these multiple machines to be deployed on the same circumferential splice on the airplane providing the multi spindle system. Interfacing of the multiple spindles is achieved by a custom OEM interface using a single screen thereby ensuring simplicity of operation.
Journal Article

E7000 High-Speed CNC Fuselage Riveting Cell

2013-09-17
2013-01-2150
Electroimpact has recently produced a high-speed fuselage panel fastening machine which utilizes an all-electric, CNC-controlled squeeze process for rivet upset and bolt insertion. The machine is designed to fasten skin panels to stringers, shear ties, and other internal fuselage components. A high riveting rate of 15 rivets per minute was achieved on the first-generation E7000 machine. This rate includes drilling, insertion, and upset of headed fuselage rivets. The rivets are inserted by a roller screw-driven upper actuator, with rivet upset performed by a lower actuator driven by a high-load-capacity ball screw. The rivet upset process can be controlled using either position- or load-based feedback. The E7000 machine incorporates a number of systems to increase panel processing speed, improve final product quality, and minimize operator intervention.
Technical Paper

Electromagnetic Bolt Inserter

2012-09-10
2012-01-1880
The Electromagnetic Bolt Inserter (EMB) is a new tool that combines functions that on previous machines were performed by two tools, a bolt inserter followed by an EMR. By combining the operations of two tools in one the processing time for the wing spar is reduced. The tool incorporates quality checks for bolt length, stake height and bolt insert height.
Journal Article

Expanding the Use of Robotics in Airframe Assembly Via Accurate Robot Technology

2010-09-28
2010-01-1846
Serial link articulated robots applied in aerospace assembly have largely been limited in scope by deficiencies in positional accuracy. The majority of aerospace applications require tolerances of +/−0.25mm or less which have historically been far beyond reach of the conventional off-the-shelf robot. The recent development of the accurate robot technology represents a paradigm shift for the use of articulated robotics in airframe assembly. With the addition of secondary feedback, high-order kinematic model, and a fully integrated conventional CNC control, robotic technology can now compete on a performance level with customized high precision motion platforms. As a result, the articulated arm can be applied to a much broader range of assembly applications that were once limited to custom machines, including one-up assembly, two-sided drilling and fastening, material removal, and automated fiber placement.
Technical Paper

Flexible High Speed Riveting Machine

2003-09-08
2003-01-2948
Airbus UK was interested in a high-speed riveting machine cell that could automatically rivet over 30 different wing panels for a wide range of aircraft to fit in a limited floor space. Electroimpact was approached and proposed a Flexible, High Speed, Riveting Machine (HSRM). The resulting flexible riveting cell is 170 feet long and contains two flexible fixtures located end to end. Two fixtures allow manual work on one fixture while the machine is riveting on the second fixture. Each fixture can be quickly reconfigured to accommodate a broad range of Airbus panels. The system went into production on January 12, 2003 and has been extremely effective, riveting the first wing panel, a lower panel 1 for the A330-300 in only 5 days. This was one of the largest panels the cell was sized to accommodate. Anticipated process improvements will reduce the riveting time to just three days per panel.
Technical Paper

Frame-Clip Riveting End Effector

2013-09-17
2013-01-2079
A frame-clip riveting end effector has been developed for installing 3.97mm (5/32) and 4.6mm (3/16) universal head aluminum rivets. The end effector can be mounted on the end of a robot arm. The end effector provides 35.6 kNt (8000 lbs) of rivet upset. Rivets can be installed fifteen millimeters from the IML. The clearance allowed to rivet centerline is 150 millimeters. The riveting process features a unique style of rivet fingers for the universal head rivet. These fingers allow the rivet to be brought in with the ram. This differentiates from some styles of frame-clip end effectors in which the rivet is blown into the hole. The paper shows the technical components of the end effector in sequence: the pneumatic clamp, rivet insert and upset. The end effector will be used for riveting shear ties to frames on the IML of fuselage panels.
Technical Paper

High Accuracy Assembly of Large Aircraft Components Using Coordinated Arm Robots

2016-09-27
2016-01-2133
Aircraft manufacturers are seeking automated systems capable of positioning large structural components with a positional accuracy of ±0.25mm. Previous attempts at using coordinated arm robots for such applications have suffered from the use of low accuracy robots and minimal systems integration. Electroimpact has designed a system that leverages our patented Accurate Robot technology to create an extensively automated and comprehensively integrated process driven by the native airplane component geometry. The predominantly auto-generated programs are executed on a single Siemens CNC that controls two Electroimpact-enhanced Kuka 6 axis robots. This paper documents the system design including the specification, applicable technologies, descriptions of system components, and the comprehensive system integration. The first use of this system will be the accurate assembly of production empennage panels for the Boeing 777X, 787 and 777 airplanes.
Technical Paper

High Volume Automated Spar Assembly Line (SAL)

2017-09-19
2017-01-2073
The decision to replace a successful automated production system at the heart of a high volume aircraft factory does not come easily. A point is reached when upgrades and retrofits are insufficient to meet increasing capacity demands and additional floor space is simply unavailable. The goals of this project were to increase production volume, reduce floor space usage, improve the build process, and smooth factory flow without disrupting today’s manufacturing. Two decades of lessons learned were leveraged along with advancements in the aircraft assembly industry, modern machine control technologies, and maturing safety standards to justify the risk and expense of a ground-up redesign. This paper will describe how an automated wing spar fastening system that has performed well for 20 years is analyzed and ultimately replaced without disturbing the high manufacturing rate of a single aisle commercial aircraft program.
Technical Paper

Improved Briles Rivet Forming Using High-Speed Force Feedback and Improved Die Geometry

2019-03-19
2019-01-1377
Electroimpact and Kawasaki Heavy Industries (KHI) have produced a new riveting process for the forming of Briles type rivets in Boeing 777 and 777X fuselage assemblies. The Briles rivet is typically used for fuselage assembly and is unique in that it has a self-sealing head. Unlike conventional headed rivets such as the NAS1079, this fastener does not require aircraft sealant under the head to be fluid tight. This unique fastener makes for a difficult fastening process due to the fact that interference must be maintained between the hole and fastener shank, as well as along the sides of the fastener head. Common issues with the formed fasteners include gapping under the fastener head and along the shank of the fastener. Electroimpact has employed a host of different technologies to combat these issues with Briles fastening. First, Electroimpact’s patented “Air Gap” system allows the machine to confirm that the head of the rivet is fully seated in the countersink prior to forming.
Journal Article

Integrated Ball-Screw Based Upset Process for Index Head Rivets Used in Wing Panel Assembly

2015-09-15
2015-01-2491
A new high speed forming process for fatigue rated index head rivets used in wing panel assembly using ball-screw based servo squeeze actuation has been developed. The new process is achieved using a combination of force and position control and is capable of forming to 40,000 lbs at rates of up to 200,000 lbs/second whilst holding the part location to within +/− 10 thousandths of an inch. Multi-axis riveting machines often have positioning axes that are also used for fastener upset. It is often the case that while a CNC is used for positioning control, another secondary controller is used to perform the fastener upset. In the new process, it has been possible to combine the control of the upset process with the machine CNC, thus eliminating any separate controllers. The fastener upset force profile is controlled throughout the forming of the rivet by using a closed loop force control system that has a load cell mounted directly behind the stringer side forming tool.
X