Refine Your Search

Topic

Search Results

Journal Article

11 Reasons to Use Automated Metrology

2019-03-19
2019-01-1369
Aerospace structures manufacturers find themselves frequently engaged in large-scale 3D metrology operations, conducting precision measurements over a volume expressed in meters or tens of meters. Such measurements are often done by metrologists or other measurement experts and may be done in a somewhat ad-hoc fashion, i.e., executed in the most appropriate method according to the lights of the individual conducting the measurement. This approach is certainly flexible but there are arguments for invoking a more rigorous process. Production processes, in particular, demand an automated process for all such “routine” measurements. Automated metrology offers a number of advantages including enabling data configuration management, de-skilling of operation, real time input data error checking, enforcement of standards, consistent process execution and automated data archiving. It also reduces training, setup time, data manipulation and analysis time and improves reporting.
Technical Paper

A Phased Approach to Optimized Robotic Assembly for the 777X

2019-03-19
2019-01-1375
Low rate initial production of the 777X flight control surfaces and wing edges has been underway at the Boeing St. Louis site since early 2017. Drilling, inspection, and temporary fastening tasks are performed by automated multi-function robotic systems supplied by Electroimpact. On the heels of the successful implementation of the initial four (4) systems, Phases II and III are underway to meet increasing production demands with three (3) and four (4) new cells coming online, respectively. Assemblies are dedicated to particular cells for higher-rate production, while all systems are designed for commonality offering strategic backup capability. Safe operation and equipment density are optimized through the use of electronic safeguards. New time-saving process capabilities allow for one-up drilling, hole inspection, fastening, fastener inspection, and stem shaving.
Journal Article

A Process for Delivering Extreme AFP Head Reliability

2019-03-19
2019-01-1349
Every now and then a good idea happens. The Modular head was a great idea and enabled the use of multiple types of AFP heads, ATL, ply cutting, part probing, etc. with the use of a single machine and machining cell. At the time the modular head was developed by Electroimpact circa 2004, the industry assumed (and accepted) that AFP was an unreliable process. It still isn’t as reliable as we’d like. One way of coping with this lack of reliability is to stage more than one head in the AFP cell so that a spare head of the exact same type is ready to jump into action if the head out on the floor has an issue. If the reliability of the AFP process were to increase 10x or 50x, would there still be a business case for the multiple AFP head system? The modular head may still win the day, but the metrics change. For instance, if there was only 20 minutes of down time for every head load, it may no longer be advantageous to have 2 heads of the exact same type in the cell.
Technical Paper

AFP Automated Inspection System Performance and Expectations

2017-09-19
2017-01-2150
In AFP manufacturing systems, manually inspection of parts consumes a large portion of total production time and is susceptible to missing defects. The aerospace industry is responding to this inefficiency by focusing on the development of automated inspection systems. The first generation of automated inspection systems is now entering production. This paper reviews the performance of the first generation system and discusses reasonable expectations. Estimates of automated inspection time will be made, and it will be shown that the automated solution enables a detailed statistical analysis of manufactured part quality and provides the data necessary for statistical process control. Data collection allows for a reduction in rework because not all errors need to be corrected. Expectations will be set for the accuracy for both ply boundary and overlap/gap measurements. The time and resource cost of development and integration will also be discussed.
Technical Paper

Advanced EMR Technology

1992-10-01
922408
New EMR technologies have been developed in response to customer demand for better process control and reliability. In hand riveting of large panels visual contact between operators is blocked. A reliable means was required to insure that guns could only discharge when properly deployed upon opposing ends of the rivet. A second problem is to satisfy the demand for improved process control in EMR operation. These goals were achieved by implementing a fully digital control scheme for the EMR operation. These new technologies are covered in this paper.
Technical Paper

An Automated Production Fastening System for LGP and Hi-Lok Titanium Bolts for the Boeing 737 Wing Panel Assembly Line

2015-09-15
2015-01-2514
A new automated production system for installation of Lightweight Groove Proportioned (LGP) and Hi-Lock bolts in wing panels has been implemented in the Boeing 737 wing manufacturing facility in Renton, Washington. The system inserts LGP and Hi-Lok bolts into interference holes using a ball screw mechanical squeeze process supported by a back side rod-locked pneumatic clamp cylinder. Collars are fed and loaded onto a swage die retaining pin, and swaging is performed through ball screw mechanical squeeze. Offset and straight collar tools allow the machine to access 99.9% of fasteners in 3/16″, ¼″ and 5/16″ diameters. Collar stripping forces are resolved using a dynamic ram inertial technique that reduces the pull on the work piece. Titanium TN nuts are fed and loaded into a socket with a retaining spring, and installed on Hi-Loks Hi-Lok with a Bosch right angle nut runner.
Journal Article

Automated In-Process Inspection System for AFP Machines

2015-09-15
2015-01-2608
In many existing AFP cells manual inspection of composite plies accounts for a large percentage of production time. Next generation AFP cells can require an even greater inspection burden. The industry is rapidly developing technologies to reduce inspection time and to replace manual inspection with automated solutions. Electroimpact is delivering a solution that integrates multiple technologies to combat inspection challenges. The approach integrates laser projectors, cameras, and laser profilometers in a comprehensive user interface that greatly reduces the burden on inspectors and decreases overall run time. This paper discusses the implementation of each technology and the user interface that ties the data together and presents it to the inspector.
Technical Paper

Automated Riveting of C-130J Aft Fuselage Panels

2017-09-19
2017-01-2075
Electroimpact and Lockheed Martin have developed an automated drilling and fastening system for C-130J aft fuselage panels. Numerous design and manufacturing challenges were addressed to incorporate the system into Lockheed Martin’s existing manufacturing paradigm and to adapt Electroimpact’s existing line of riveting machines for manufacture of these legacy aircraft parts. Challenges to automation included design of a very long yet sufficiently rigid and lightweight offset riveting anvil for fastening around deep circumferential frames, automated feeding of very short, “square” rivets in which the length is similar to the head diameter, creation of part programs and simulation models for legacy parts with no existing 3d manufacturing data, and crash protection for the aircraft part from machine collisions, given the uncertainties inherent in the model and the unique geometry of the aircraft parts.
Journal Article

Automatic Temporary Fastener Installation System for Wingbox Assembly

2016-09-27
2016-01-2085
The automation cycle time of wing assembly can be shortened by the automated installation of single-sided temporary fasteners to provide temporary part clamping and doweling during panel drilling. Feeding these fasteners poses problems due to their complexity in design and overall heavy weight. In the past, Electroimpact has remotely fed these fasteners by blowing them through pneumatic tubing. This technique has resulted in occasional damage to fasteners during delivery and a complex feed system that requires frequent maintenance. Due to these issues, Electroimpact has developed a new fully automated single-sided temporary fastening system for installation of the LISI Clampberry fasteners in wing panels for the C919 wing factory in Yanliang, China. The feed system stores fasteners in gravity-fed cartridges on the end effector near the point of installation.
Technical Paper

Automatic Tool Change System for Stringer Side Rivet and Bolt Anvils on a D-Frame or C-Frame Fuselage Fastening Machine

2017-09-19
2017-01-2080
Manually changing stringer-side tooling on an automatic fastening machine is time consuming and can be susceptible to human error. Stringer-side tools can also be physically difficult to manage because of their weight, negatively impacting the experience and safety of the machine operator. A solution to these problems has recently been developed by Electroimpact for use with its new Fuselage Skin Splice Fastening Machine. The Automatic Tool Changer makes use of a mechanically passive gripper system capable of securely holding and maneuvering twelve tools weighing 40 pounds each inside of a space-saving enclosure. The Automatic Tool Changer is mounted directly to the stringer side fastening head, meaning the machine is capable of changing tools relatively quickly while maintaining its position on the aircraft panel with no machine operator involvement.
Technical Paper

Case Study on the Challenges and Responses of a Large Turnkey Assembly Line for the C919 Wing

2020-03-10
2020-01-0010
Design and production of an assembly system for a major aircraft component is a complex undertaking, which demands a large-scale system view. Electroimpact has completed a turnkey assembly line for producing the wing, flap, and aileron structures for the COMAC C919 aircraft in Xi’an, China. The project scope includes assembly process design, material handling design, equipment design, manufacture, installation, and first article production support. Inputs to the assembly line are individual component parts and small subassemblies. The assembly line output is a structurally completed set of wing box, flaps, and ailerons, for delivery to the Final Assembly Line in Shanghai. There is a trend toward defining an assembly line procurement contract by production capacity, versus a list of components, which implies that an equipment supplier must become an owner of production processes.
Technical Paper

Coated Rivet Dies: A Dramatic Improvement in Rivet Interference Profile

2016-09-27
2016-01-2084
Successfully riveting aerospace fatigue-rated structure (for instance, wing panels) requires achieving rivet interference between a minimum and a maximum value in a number of locations along the shank of the rivet. In unbalanced structure, where the skin is much thicker than the stringer, this can be particularly challenging, as achieving minimum interference at the exit of the skin (D2) can often be a problem without exceeding the maximum interference at the exit of the stringer (D4). Softer base materials and harder, higher-strength rivets can compound the problem, while standard manufacturing variations in hardness of part and rivet materials can cause repeatability issues in the process. This paper presents a solution that has been successfully implemented on a production commercial aircraft. The application of a special coating on the stringer side die dramatically reduces interference at the exit of the stringer, which in some instances resulted in a reduction of over 38%.
Journal Article

Collaborative Robotic Fastening Using Stereo Machine Vision

2019-03-19
2019-01-1374
With typically over 2.3 million parts, attached with over 3 million fasteners, it may be surprising to learn that approximately two out of every three fasteners on a twin aisle aircraft are fastened by hand. In addition the fasteners are often installed in locations designed for strength and not necessarily ergonomics. These facts lead to vast opportunities to automate this tedious and repetitive task. The solution outlined in this paper utilizes the latest machine vision and robotics techniques to solve these unique challenges. Stereo machine vision techniques find the fastener on the interior of an aerospace structure and calculate the 6DOF (Degrees of Freedom) location in less than 500ms. Once the fastener is located, sealed, and inspected for bead width and gaps, a nut or collar is then installed. Force feedback capabilities of a collaborative robot are used to prevent part damage and ensure the nut or collar are properly located on the fastener.
Technical Paper

Development of a Multi Spindle Flexible Drilling System for Circumferential Splice Drilling Applications on the 777 Airplane

2008-09-16
2008-01-2298
Flex Track Drilling systems are being used increasingly in aerospace applications providing low cost, highly efficient automated drilling systems. Certain applications like circumferential splice drilling on large size airplane fuselages require multi spindle flex track systems working in tandem to meet production efficiency requirements. This paper discusses the development of a multi spindle flex track drilling system for a circumferential splice drilling on the 777 airplane. The multi spindle system developed uses a variety of flex track carriages attached to the flexible vacuum tracks to allow for offset or wide inside drilling. Segmented machine programmes allow these multiple machines to be deployed on the same circumferential splice on the airplane providing the multi spindle system. Interfacing of the multiple spindles is achieved by a custom OEM interface using a single screen thereby ensuring simplicity of operation.
Technical Paper

EMR with High Reliability for Retrofit of E4100 Riveting Gantry Machines

2017-09-19
2017-01-2099
Electroimpact has retrofitted two E4100 riveting gantry machines and two more are in process. These machines use the EMR (Electromagnetic Riveter) riveting process for the installation of slug rivets. We have improved the skin side EMR to provide fast and reliable results: reliability improved by eliminating a weekly shutdown of the machine. In paper 2015-01-2515 we showed the slug rivet injector using a Synchronized Parallel Gripper that provides good results over multiple rivet diameters. This injector is mounted to the skin side EMR so that the rivet injection can be done at any position of the shuttle table. The EMR is a challenging application for the fingers due to shock and vibration. In previous designs, fingers would occasionally be thrown out of the slots. To provide reliable results we redesigned the fingers retainer to capture the finger in a slotted plastic block which slides along the outside diameter of the driver bearing.
Technical Paper

Electromagnetic Bolt Inserter

2011-10-18
2011-01-2775
Interference bolts are widely used in aircraft assembly. Electroimpact has used its Low voltage Electromagnetic Riveter (LVER) technology to automatically swage collars on these bolts. The bolts are installed using two process tools, a percussive bolt inserter and the EMR. The bolt inserter inserts the bolt and the EMR swages the collar. This increased productivity over manual installation, but there was still production time to be saved. The Electromagnetic Bolt Inserter (EMB) was designed to increase production rate even more when installing bolts and swaging a collar onto the bolt. The EMB combines the great benefits of Electroimpact's Low Voltage Electromagnetic riveting technology with a bolt inserter.
Technical Paper

Flexible High Speed Riveting Machine

2003-09-08
2003-01-2948
Airbus UK was interested in a high-speed riveting machine cell that could automatically rivet over 30 different wing panels for a wide range of aircraft to fit in a limited floor space. Electroimpact was approached and proposed a Flexible, High Speed, Riveting Machine (HSRM). The resulting flexible riveting cell is 170 feet long and contains two flexible fixtures located end to end. Two fixtures allow manual work on one fixture while the machine is riveting on the second fixture. Each fixture can be quickly reconfigured to accommodate a broad range of Airbus panels. The system went into production on January 12, 2003 and has been extremely effective, riveting the first wing panel, a lower panel 1 for the A330-300 in only 5 days. This was one of the largest panels the cell was sized to accommodate. Anticipated process improvements will reduce the riveting time to just three days per panel.
Technical Paper

Fully Automated Off-Line Cartridge Filling Station

2017-09-19
2017-01-2100
A fully automated off-line cartridge filling station has been commissioned to support the new Boeing SAL production cell. The filing station uses automated fastener feed technology that is typically found on the machines themselves. Incorporating this technology off-line in place of the traditional manual handling processes extends the benefits of automation beyond the main manufacturing cell. A single operator is able to keep up with the demand of eight production fastening machines while maintaining the highest levels of accuracy and quality. Additional benefits to this application of automation include reduction of the operators exposure to risks associated with manual handling and repetitive tasks.
Technical Paper

Gantry Horizontal Slug Riveting System

2024-03-05
2024-01-1924
Previously given Paper 09ATC-0232 delivered at the SAE Aerotech conference in Seattle in 2009 reports on the E6000 machine installing slug rivets with the EMR. Paper 2015-01-2491given at the SAE conference in Seattle in 2015 reports on index head rivets being installed with screw driven squeeze process. This paper reports on the screw driven squeeze process installing unheaded slug rivet which is a more complex process. We also report on improvements to the fixture automation.
Technical Paper

High Accuracy Assembly of Large Aircraft Components Using Coordinated Arm Robots

2016-09-27
2016-01-2133
Aircraft manufacturers are seeking automated systems capable of positioning large structural components with a positional accuracy of ±0.25mm. Previous attempts at using coordinated arm robots for such applications have suffered from the use of low accuracy robots and minimal systems integration. Electroimpact has designed a system that leverages our patented Accurate Robot technology to create an extensively automated and comprehensively integrated process driven by the native airplane component geometry. The predominantly auto-generated programs are executed on a single Siemens CNC that controls two Electroimpact-enhanced Kuka 6 axis robots. This paper documents the system design including the specification, applicable technologies, descriptions of system components, and the comprehensive system integration. The first use of this system will be the accurate assembly of production empennage panels for the Boeing 777X, 787 and 777 airplanes.
X