Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

ALTAN, a New Tool for Spacecraft Thermal Simulation

2004-07-19
2004-01-2317
ALTAN (ALenia Thermal ANalyser) is a tool developed in Alenia Spazio, for the thermal simulation of satellites. Distinctive features of ALTAN are the description of the system in terms of thermal objects that can be considered as high level primitives, the accurate modelling of the energy sources (planets and sun) and of the optical properties, the integration in a single tool of the steps of radiative, conductive and thermal calculations and of the post-process of the results. An example of ALTAN application is given for Bepi-Colombo mission to Mercury, in particular the modelling of the highly variable planet temperature and the directional optical properties of the planet surface.
Technical Paper

ATV Thermal Control System

2004-07-19
2004-01-2469
The Automated Transfer Vehicle (ATV) Thermal Control System (TCS) has the task to ensure the required internal environment at level of pressurized module and to thermally control the not pressurised modules and installed equipment, using passive and active control means, in response to the relevant applicable requirements. The ATV vehicle is assially subdivided into three main modules: the Integrated Cargo Carrier (ICC), the Equipped Avionics Bay (EAB) and the Equipped Propulsion Bay (EPB). Each of these modules present elaborated and specific thermal design solutions, to satisfy the different required operative tasks. The extensive thermal analysis campaign performed at ATV vehicle level and in progress for the next Qualification Review (QR) to justify and support the thermal control design solutions and verification status is described.
Technical Paper

An Overview of the Thermal Verification & Flight Data of Integral and Artemis Satellites

2003-07-07
2003-01-2465
The INTEGRAL (International Gamma Ray Astrophysics Laboratory) program is an ESA observatory scientific satellite to be used for gamma ray astronomy, while ARTEMIS (Advanced Data Relay and Technology Mission) is an ESA program to be used for data relay and technology demonstration. ARTEMIS was launched on the 12th of July 2001 with an Ariane V launcher from CSG, after successful completion of the System Environmental test campaign at ESTEC including Solar Simulation Thermal Balance tests on PFM (1998). INTEGRAL has been successfully launched on the 17th of October 2002 with a Proton launcher from Baikonour Cosmodrome, after completion of the System Environmental test campaign at ESTEC including Solar Simulation Thermal Balance tests on STM (1998) and PFM (2002).
Technical Paper

Anthropometric and Blood Flow Characteristics Leading to EVA Hand Injury

2009-07-12
2009-01-2471
The aim of this study was to explore if fingernail delamination injury following EMU glove use may be caused by compression-induced blood flow occlusion in the finger. During compression tests, finger blood flow decreased more than 60%, however this occurred more rapidly for finger pad compression (4 N) than for fingertips (10 N). A pressure bulb compression test resulted in 50% and 45% decreased blood flow at 100 mmHg and 200 mmHg, respectively. These results indicate that the finger pad pressure required to articulate stiff gloves is more likely to contribute to injury than the fingertip pressure associated with tight fitting gloves.
Technical Paper

Columbus Active Thermal Control Equipment Development

2005-07-11
2005-01-2769
The Columbus laboratory module for the International Space Station (ISS) uses active thermal control for cooling of avionics and payload in the pressurized compartment. The Active Thermal Control Subsystem (ATCS) is based on a water loop rejecting waste heat to the Medium Temperature Heat Exchanger and Low Temperature Heat Exchanger on Node 2, part of the US Segment of the ISS. Flow and temperature control in the ATCS is achieved by means of the Water Pump Assembly (WPA) and the 3-Way Modulating Valve (WTMO) units. For the flow control the WPA speed is commanded so that a fixed pressure drop is maintained over the plenum with the avionics and payload branches. Adjusting the WTMO internal flow split permit the two active units to perform the CHX and plenum inlet temperature control. The WPA includes a filter and an accumulator to control the pressure in the ATCS and to compensate for leakage and temperature-dependent volume variations.
Technical Paper

Columbus ECLS Activation and Initial Operations

2008-06-29
2008-01-2135
European Space Agency's (ESA's) Columbus module was launched on February 7, 2008. This marks the completion of more than 10 years of development. It is a major step forward for Europe in the area of Environmental Control and Life Support (ECLS) as Columbus contains several major assemblies which have been developed in Europe. These include the Condensing Heat Exchanger, Condensate Water Separator and the Cabin Fans. The paper gives a short overview of the system and its features and it will report the experiences from the initial activation and operations phase.
Technical Paper

Columbus to Human Research Facility Hydraulic Compatibility Test: Analysis and Results

2005-07-11
2005-01-3119
ESA and NASA agencies agreed to run an interface compatibility test at the EADS facility between the Columbus flight module and a duplicate ground unit of a currently on-orbit US International Standard Payload Rack, the Human Research Facility (HRF) Flight Prototype Rack (FPR). The purpose of the test was to demonstrate the capability to run US payloads inside the European ISS module Columbus. One of the critical aspects to be verified to ensure suitable operations of the two systems was the combined performance of the hydraulic controls resident in the HRF and Columbus coolant loops. A hydraulic model of the HRF FPR was developed and combined with the Columbus Active Thermal Control System (ATCS) model. Several coupled thermal-hydraulic test cases were then performed, preceded by mathematical analysis, required to predict safe test conditions and to optimize the Columbus valve configurations.
Technical Paper

Design Approach and Implementation of a Mars Surface Food Production Unit

2005-07-11
2005-01-2824
This paper describes a design proposal for adapting the OGEGU Food Production Unit (FPU) to the surface of Mars in order to produce up to 40% of the diet for a six-member crew by growing a pre-defined set of vegetable food species. The external structure, lighting system and plant support system are assessed using ESM analysis. The study shows that the mass of an FPU operating on the Mars surface, featuring an opaque inflatable structure plus all the required subsystems and equipment, is in the order of 14,000 kg. The required volume is around 150 m3 and the power consumption is around 140 kW. A reduction of c. 20 kW could be obtained by exploiting natural light using transparent materials. Finally, the paper concludes with the identification of some technological gaps that need to be investigated further for the purpose of establishing a feasible FPU on Mars.
Technical Paper

Design Status of the Closed-Loop Air Revitalization System ARES for Accommodation on the ISS

2007-07-09
2007-01-3252
During the last years extensive work has been done to design and develop the Closed-Loop Air Revitalization System ARES. The potential of ARES e.g. as part of the ISS ECLSS is to significantly reduce the water upload demand and to increase the safety of the crew by reducing dependence on re-supply flights. The design is adapted to the interfaces of the new base lined Russian MLM module as possible location for a future installation of ARES. Due to the lack of orbital support equipment and interfaces to a waste water bus, to a feed water supply line and due to the availability of only one single vent line it was necessary to make the ARES process water loop as independent as possible from the host vehicle. Another optimization effort was to match the CO2 desorption profile with the available hydrogen flow to achieve a sufficient water recovery performance, while meeting all related safety requirements, minimizing complexity and improving reliability.
Technical Paper

Design Status of the Closed-Loop Air Revitalization System ARES for Accommodation on the ISS

2009-07-12
2009-01-2506
The Closed-Loop Air REvitalisation System ARES is a regenerative life support system for closed habitats. With regenerative processes the ARES covers the life support functions: 1. Removal of carbon dioxide from the spacecraft atmosphere via a regenerative adsorption/desorption process, 2. Supply of breathable oxygen via electrolysis of water, 3. Catalytic conversion of carbon dioxide with hydrogen to water and methane. ARES will be accommodated in a double ISPR Rack which will contain all main and support functions like power and data handling and process water management. It is foreseen to be installed onboard the International Space Station (ISS) in the Columbus Module in 2013. After an initial technology demonstration phase ARES shall continue to operate thus enhancing the capabilities of the ISS Life Support System as acknowledged by NASA [5]. Due to its regenerative processes ARES will allow a significant reduction of water upload to the ISS.
Journal Article

Design Status of the Closed-Loop Air Revitalization System ARES for Accommodation on the ISS

2008-06-29
2008-01-2189
1 The Closed-Loop Air REvitalisation System ARES is a proof of technology Payload. The objective of ARES is to demonstrate with regenerative processes: the provision of the capability for carbon dioxide removal from the module atmosphere, the return supply of breathable oxygen within a closed-loop process, the conversion of the hydrogen, resulting from the oxygen generation via electrolysis, to water. The ARES Payload is foreseen to be installed - in 2012 - onboard the ISS in the Columbus Module. The operation of ARES - in a representative manned microgravity environment - will produce valuable operational data on a system which is based on technologies which are different from other air revitalization systems presently in use. The ARES Technology Demonstrator Payload development started in 2003 with a Phase B, see references [1], [2], [3] and [4]. ARES is presently in Phase C1 and a PDR is scheduled for the beginning of 2009.
Technical Paper

Design Validation - via Parabolic Flight Tests - of a Condensate Buffer Equalizing a Discontinuous Gas / Water Flow between a Condensing Heat Exchanger and a Water Separator

2006-07-17
2006-01-2087
EADS SPACE Transportation GmbH designed, built and tested a condensate buffer to be located between a Condensing Heat Exchanger (CHX) and a Condensate Water Separator Assembly (CWSA), as part of the ECLSS of the European Columbus Module. Under zero-g conditions, the separation of water from an air-water mixture is always difficult, especially if a passive device is to be used such as the low power consuming Columbus CWSA. The additional buffer volume reduces condensate water peaks reaching the CWSA to a level that excludes an overloading of the CWSA and a release of free water droplets into the air return to the cabin. In the CHX/CWSA system this may only be necessary under worst case operational conditions and with a failure of the qualified hydrophilic coating of the CHX. The buffer design principle was confirmed via prior analyses and on-ground testing. The performance of such a condensate buffer under micro-g conditions was verified during parabolic flights.
Technical Paper

Esarad--Improvements to the European Space AgencyS Radiative Analyses

1996-07-01
961374
ESARAD is an integrated suite of analysis tools for thermal radiative analysis. The suite provides modules for: • Geometry Definition; • Calculation of view factor, radiative exchange factor and solar, albedo and planet flux results; •Visualization of models in orbit with pre- and post-processing of radiative and thermal results; • Reporting of all aspects of the model; and • Generation of Input Files for Thermal Analysis tools. ESARAD is driven by a fully developed GUI, providing the user with a simple, intuitive windows, menus, forms interface to all its features. A modern, block structured language can also be used to run ESARAD. This gives the advanced user great power and flexibility to perform the most complex analyses. ESARAD was designed and developed between 1988 and 1991 to replace the VWHEAT software used by ESA at that time.
Technical Paper

HUYGENS Probe: Thermal Design, Test, Flight Comparison, and Descent Prediction

1998-07-13
981644
A study of the first in-orbit temperatures of Huygens shows that the probe will very likely survive thermally all vacuum cruise and coast phases. Calculated heat fluxes, mass flows of Titan's atmosphere into and out of the probe and temperatures give confidence also for the mission phase proper in 2004 i.e. the 2.5 h descent into Titan's -2OO°C atmosphere. Basotect foam bags insulate the probe from this atmosphere. These bags and their fixation had drastically to be modified between Titan test on STPM (May 95) and on FM (June 96). The mission phases, thermal requirements, thermal design, tests with the probe, special tests for the foam bag development and their modification are presented.
Technical Paper

Integral: 2.5 Y ears on Orbit - Thermal P erformance and Lesson Learnt

2005-07-11
2005-01-2989
The INTEGRAL (International Gamma Ray Astrophysics Laboratory) program is an ESA observatory scientific satellite to be used for gamma ray astronomy, It was successfully launched on the 17th of October 2002 with a Proton launcher from Baikonour Cosmodrome and after a dedicated Commissioning Phase it was ready to start its scientific mission. After 2 years the first lifetime goal (nominal lifetime) was reached and it entered the extended lifetime (3 additional years) Alenia Spazio, who had the role of Prime Contractor, was fully responsible of the Thermal Control of the satellite. During 2.5 years the satellite was carefully monitored and the thermal control design mounted on it has been capable to meet all the thermal requirements, providing the optimal thermal environment.
Technical Paper

Life Test Validation of Life Support Hardware in CONCORDIA Antarctic base

2004-07-19
2004-01-2352
Given the constraints of the current launchers, manned exploration beyond LEO implies long time missions, a high mass of metabolic consumables and consequently regenerative life support technologies developments. To validate their efficiency, as well as their reliability, these technologies need to be tested in the most analog conditions (i.e. isolation, limited spare part, …). A large number of these conditions are met in the new permanent French-Italian settlement called Concordia, currently being built in the Antarctic continent. Over the last 15 years, ESA developed regenerative life support technologies. Two of these technologies: a Grey Water Treatment Unit and a Black Water Treatment Unit are currently assembled at the size of 15 to 70 persons to fulfill the Concordia crew needs The first technology is a multi step filtration system and will recycle the shower, washing machine, dish washer and cleaning water.
Technical Paper

Review of Italsat Thermal Performances Throughout the First Eighteen Months of Operational Life

1992-07-01
921324
Italsat F1 is a communication satellite sponsored by the Italian Space Agency and developed by Alenia Spazio. The spacecraft consists with a platform, which provides all the required services, and three payloads: a global beam package, a multibeam package for domestic communication services at 20/30 GHz, and an experimental propagation package at 40/50 GHz which embraces the European continent. Italsat F1 was sent off by an Ariane IV launcher from the Kourou Space Center in French Guyana on January 16th,1991, and it has been operating since February 1991. Having gone through a complete cycle of solstices and equinoxes, Italsat experienced the extreme environmental conditions at its beginning of life. The flight data collected throughout the first year of operational life enabled a review of the spacecraft thermal performances. This paper presents an overview of in-orbit observed temperatures.
Technical Paper

The Columbus ECLSS First Year of Operations

2009-07-12
2009-01-2414
The launch and activation of ESA's Columbus module in early 2008 marked the completion of more than 10 years of development. Since then the Columbus ECLS is operating, including its major European ECLSS assemblies such as Condensing Heat Exchanger (CHX), Condensate Water Separator, Cabin Fans and Sensors. The paper will report the experiences from the first year of operations in terms of events, failures and lessons learned. Examples of this is the description of some off-nominal situations (such as Condensate Removal and IMV Return Fan failure, and relevant troubleshooting), and the preparation to Columbus Reduced Condensation Mode, as requested by NASA in order to minimize the crew time needed to empty Condensate Water Tanks in US Lab.
Technical Paper

The I/R Thermal Balance Test of Radarsat-2: Approach to Verification / Correlation

2005-01-11
2005-01-2988
Radarsat-2 is a commercial Synthetic Aperture Radar satellite for earth observation. [1] The general stowed configuration is shown in Figure 1. In nominal operation mode, once deployed, the large SAR polarimetric Antenna (i.e. able to transmit and receive both horizontal and vertical polarisations) is inclined of about -29.8° versus the nominal direction of geodetic local surface normal (Right Looking mode). When is necessary to take images of South Pole, nominally not visible from SAR, the S/C must be rotated to the +29.8° position (Left Looking mode). During the Radarsat-2 thermal testing the S/C (PFM) was subjected to a first thermal balance/thermal cycling test in vacuum with simulation of external heat fluxes by means of I/R lamps and additional test heaters. A very complex thermal test configuration was required in order to simulate the continually varying thermal environment imposed by the S/C nominal sun-synchronous orbit and attitude.
Technical Paper

The Thermal Environmental Control (TEC) of the Fluid Science Laboratory (FSL): a combined (Water/Air) thermal design solution for a Columbus Active Rack

2001-07-09
2001-01-2374
The Fluid Science Laboratory (FSL) is an advanced multi-user facility for conducting fluid physics research in microgravity conditions. It will be installed in the Columbus module of the International Space Station (ISS) scheduled for launch in 2004. FSL is being developed by a European industrial team, led by ALENIA SPAZIO of Italy, and managed by the European Space Agency (ESA). The FSL Thermal Environment Control (TEC) establishes a defined thermal environment during the complete experiment duration to keep the experiment and the supporting subsystems within their thermal requirements. The TEC is further subdivided into three sections. The Air Cooling Section is based on the Avionics Air Assembly (AAA) which generates air streams inside the Facility to collect, by forced convection, the waste heat from the electronics belonging to the various Subsystems. The Secondary Water Loop (SWL) cooling Section provides the cooled water to the Experiment Container.
X