Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Accident Statistical Distributions from NASS CDS - An Update

2020-04-14
2020-01-0518
The National Automotive Sampling System (NASS) Crashworthiness Data System (CDS) contains an abundance of field crash data. As technology advances and the database continues to grow over the years, the statistical significance of the data increases and trends can be observed. The purpose of this paper is to provide a broad-based, up-to-date, reference resource with respect to commonly sought-after crash statistics. Charts include up-to-date crash distributions by Delta-V and impact direction with corresponding injury severity rates. Rollover data is also analyzed, as well as historical trends for injury severity, belt usage, air bag availability, and the availability of vehicle safety technology.
Journal Article

Full-scale Fire Tests of Electric Drive Vehicle Batteries

2015-04-14
2015-01-1383
Fires involving cars, trucks, and other highway vehicles are a common concern for emergency responders. In 2013 alone, there were approximately 188,000 highway vehicle fires. Fire Service personnel are accustomed to responding to conventional vehicle (i.e., internal combustion engine [ICE]) fires, and generally receive training on the hazards associated with those vehicles and their subsystems. However, in light of the recent proliferation of electric drive vehicles (EDVs), a key question for emergency responders is, “what is different with EDVs and what tactical adjustments are required when responding to EDV fires?” The overall goal of this research program was to develop the technical basis for best practices for emergency response procedures for EDV battery incidents, with consideration for suppression methods and agents, personal protective equipment (PPE), and clean-up/overhaul operations.
Technical Paper

Functional Safety & Safety Critical Systems - An Overview

2021-04-06
2021-01-0157
Safety-critical systems in most modern applications are designed in a way such that they provide a fail-safe operation when a fault occurs, to pose minimum risk to the user. As these systems become more sophisticated with increased functionality, it is important that their design incorporates functional safety concepts which entail detection of a potential harmful condition that prompts a corrective action to prevent hazardous events. In this paper, we discuss the significance of safety-critical systems along with the implementation of fail-safe designs in these systems. We also aim to provide an overview of functional safety as addressed in some of the industry standards and through a case study demonstrate how the concepts can be used when developing a safety-critical system.
Technical Paper

Motorcycle Rider Kinematics during Low and High Speed Turning Maneuvers

2018-04-03
2018-01-0536
Motorcycle stability during a variety of maneuvers is maintained through both rider steering input and body interactions with the seat, tank, footrests, and handlebars. Exploring how rider-vehicle interactions impact vehicle control is critical to creating a comprehensive understanding of motorcycle handling. The present study aims to understand how experienced motorcycle riders influence motorcycle dynamics by characterizing center of pressure (COP) location, force applied at the seat, rider lean angle and offset relative to the motorcycle, and steering angle for various maneuvers. A course was defined on Exponent’s Test and Engineering Center (TEC) track and skid pad that included sections of straight riding, navigating a banked curve, and sharp turning (low speed U-turns, 90 degree turn after a stop, and obstacle avoidance). The task influenced rider response and, in particular, lateral COP location at the seat.
Technical Paper

Recreational Off-Highway Vehicle (ROV) Handling and Control

2012-04-16
2012-01-0239
Through testing conducted by multiple facilities, it has been observed that the class of compact two-person vehicles designed exclusively for off-road operation known as Recreational Off-Highway Vehicles (ROVs) exhibit a range of steady-state handling characteristics - including both understeer and understeer transitioning to oversteer as measured in circle-turn tests similar to those set forth in SAEJ266. This handling characteristic is different from on-road passenger cars and light trucks which, under all but heavy loading conditions, exhibit linear range and limit understeer steady-state cornering behavior. Limit understeer is considered desirable for on-road vehicles because it provides a directionally stable and generally predictable control response. In the research presented in this paper, the handling qualities, including controllability, of a ROV which was modified to have different steady-state handling characteristics ranging from understeer to oversteer is examined.
Journal Article

Timber Utility Pole Fracture Mechanics Due to Non-Deformable and Deformable Moving Barrier Impacts

2011-04-12
2011-01-0288
The energy dissipated by the fracture of wooden utility poles during vehicle impacts is not currently well documented, is dependent upon non-homogenous timber characteristics, and can therefore be difficult to quantify. While there is significant literature regarding the static and quasi-static properties of wood as a building material, there is a narrow body of literature regarding the viscoelastic properties of timber used for utility poles. Although some theoretical and small-scale testing research has been published, full-scale testing has not been conducted for the purpose of studying the vehicle-pole interaction during impacts. The parameters that define the severity of the impact include the acceleration profile, vehicle velocity change, and energy dissipation. Seven full-scale crash tests were conducted at Exponent's Arizona test facility utilizing both moving deformable and non-deformable barriers into new wooden utility poles.
Technical Paper

Validation of High Dynamic Range Photography as a Tool to Accurately Represent Low-Illumination Scenes

2012-04-16
2012-01-0078
Previous research [1] described a procedure for creating prints from digital photographs that accurately represent critical features of visual scenes at low levels of illumination. In this procedure, observers adjust the brightness of a digital photographs captured using standard photography until it best matches the visible characteristics of the actual scene. However, standard digital photography cannot capture the full dynamic range of a scene's luminous intensities in many low-illumination settings. High dynamic range (HDR) photography has the potential to more accurately represent a viewer's perception under low illumination. Such a capability can be critical to representing nighttime roadway scenes, where HDR photography can enable the creation of more accurate photographic representations of bright visual stimuli (e.g., vehicle headlamps, street lighting) while also maintaining the integrity of the photograph's darker portions.
X