Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A DFSS Approach to Optimize the Second Row Floor Duct Using Parametric Modelling

The main function of mobile air conditioning system in a vehicle is to provide the thermal comfort to the occupants sitting inside the vehicle at all environmental conditions. The function of ducts is to get the sufficient airflow from the HVAC system and distribute the airflow evenly throughout the cabin. In this paper, the focus is to optimize the rear passenger floor duct system to meet the target requirements through design for six sigma (DFSS) methodology. Computational fluid dynamics analysis (CFD) has been used extensively to optimize system performance and shorten the product development time. In this methodology, a parametric modeling of floor duct design using the factors such as crossectional area, duct length, insulation type, insulation thickness and thickness of duct were created using CATIA. L12 orthogonal design array matrix has been created and the 3D CFD analysis has been carried out individually to check the velocity and temperature.
Technical Paper

Light Weight Structure Development Using Non Linear Load Cases For Suspension Components (Cradle)

Based on current trends, there is a huge demand for lightweight components, which improves fuel efficiency and reduces cost of the vehicle. Stiffness based optimization process is simple and straightforward while durability (Misuse load case) based optimizations are relatively complex due to its highly nonlinear behavior. However, durability performances are critical in a front cradle design. So a process needs to be identified for creating a new light weight front cradle design. This study talks about the process of identifying new cast aluminium cradles achieving NVH and durability performance. Load path study using topology optimization is done based on compliance method for the durability load case. A concept model is generated from the topology results. This concept model is further optimized for thickness of ribs and walls by the application of various shape variables. All the critical non linear durability load cases are linked for the shape optimization study.
Technical Paper

Optimization Solutions for Fan Shroud

Fan shroud is one of the critical components in an engine cooling system. It helps in achieving optimum air flow across the heat exchangers. The major challenge is to design a fan shroud which meets noise, vibration and harshness (NVH) requirements without compromising on air flow targets [1]. An improperly designed fan shroud will cause detrimental effects such as undesirable noise and vibration, which will further damage the surrounding components. In current days, multiple simulations and test iterations are carried out in order to optimize its design. The objective of this paper is to provide a design framework to achieve optimized fan shroud that meets NVH requirements in quick turnaround time using Design for Six Sigma (DFSS) approach [2]. The purpose of the Engine cooling system is to maintain the coolant temperature across the vehicle.
Technical Paper

Optimization of Muffler Acoustics Performance using DFSS Approach

Noise pollution is a major concern for global automotive industries which propels engineers to evolve new methods to meet passenger comfort and regulatory requirements. The main purpose of an exhaust system in an automotive vehicle is to allow the passage of non-hazardous gases to the atmosphere and reduce the noise generated due to the engine pulsations. The objective of this paper is to propose a Design for Six Sigma (DFSS) approach followed to optimize the muffler for better acoustic performance without compromising on back pressure. Conventionally, muffler design has been an iterative process. It involves repetitive testing to arrive at an optimum design. Muffler has to be designed for better acoustics performance and reduced back pressure which complicates the design process even more.