Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A DFSS Approach Study on the Effects of Vehicle Cabin Properties on HVAC System’s Cool Down Performance Using 1D Simulation

2020-04-14
2020-01-1258
Due to the increase in heat wave across the globe, maintaining the thermal comfort of passengers in a vehicle is becoming a challenge. Considering global warming, there is a need to shift towards greener refrigerants which in itself causes a marginal degradation in the Heating Ventilation and Air Conditioning (HVAC) system performance. Also the emission norms and regulations demanding for a smaller engine if not for a hybrid or electric vehicle, there is a need for optimally designing the HVAC system since it is directly related with the efficiency of the vehicle and also plays a vital role in the customer comfort. Hence maintaining the comfort level of the passengers needs further exploration and challenging rather than optimizing the HVAC system alone in the competitive market. Conventionally for given system where we need sufficient cooling, the capacity of the components can be increased in order to meet the customer comfort.
Technical Paper

A Study on the Effect of Different Glasses and Its Properties on Vehicle Cabin during Soaking at Hot Ambient Conditions Using 1D Simulation

2020-04-14
2020-01-0956
Increase in the atmospheric temperature across the globe during summer, increases the heat load in the vehicle cabin, creating a huge thermal discomfort for the passengers. There are two scenarios where these adverse conditions can be a problem during the summer. Firstly, while driving the vehicle in traffic conditions and secondly, when the vehicle is parked under the sun. When the vehicle is exposed to the radiation from the sun for a period, the cabin temperature can reach alarming levels, which may have serious discomfort and health effects on the people entering the vehicle. Although there are options of remote switching on of air conditioners, they are restricted to vehicles having an automatic transmission and availability of the mobile network. So, it is important to explore the possible options which can be used for restricting the external heat load to the cabin.
Technical Paper

Robust 1D Modelling for Automotive HVAC Warmup Prediction Using DFSS Approach

2017-03-28
2017-01-0179
In an automotive air-conditioning (AC) system, the heater system plays a major role during winter condition to provide passenger comforts as well as to clear windshield defogging and defrost. In order to meet the customer satisfaction the heater system shall be tested physically in severe cold conditions to meet the objective performance in wind tunnel and also subjective performance in cold weather regions by conducting on road trials. This performance test is conducted in later stage of the program development, since the prototype or tooled up parts will not be available at initial program stage. The significance of conducting the virtual simulation is to predict the performance of the HVAC (Heating ventilating air-conditioning) system at early design stage. In this paper the development of 1D (One dimensional) model with floor duct systems and vehicle cabin model is studied to predict the performance. Analysis is carried out using commercial 1D simulation tool KULI®.
X