Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3D Simulation Models Simplified to 2D Planar/Axisymmetric Problems in Automotive Structures

2016-04-05
2016-01-0397
In automotive FEA analysis, there are many components or assemblies which can be simplified to two-dimensional (2D) plane or axisymmetric analytical problems instead of three-dimensional (3D) simulation models for quick modeling and efficient analysis to meet the timing in the design development process, especially in the advanced design phase and iteration studies. Even though some situations are not perfectly planar or axisymmetric problems, they may still be approximated in 2D planar or axisymmetric models, achieving results accurate enough to meet engineering requirements. In this paper, the authors have presented and summarized several complex 3D analytical situations which can be replaced by simplified plane axisymmetric models or 2D plane strain analytical models.
Technical Paper

3rd Generation AHSS Virtual and Physical Stamping Evaluation

2020-04-14
2020-01-0757
Developing lightweight, stiff and crash-resistant vehicle body structures requires a balance between part geometry and material properties. High strength materials suitable for crash resistance impose geometry limitations on depth of draw, radii and wall angles that reduce geometric efficiency. The introduction of 3rd generation Advanced High Strength Steels (AHSS) can potentially change the relationship between strength and geometry and enable simultaneous improvements in both. This paper will demonstrate applicability of 3rd generation AHSS with higher strength and ductility to replace the 780 MPa Dual Phase steel in a sill reinforcement on the current Jeep Cherokee. The focus will be on formability, beginning with virtual simulation and continuing through a demonstration run on the current production stamping tools and press.
Journal Article

A Case Study on Clean Side Duct Radiated Shell Noise Prediction

2017-03-28
2017-01-0444
Engine air induction shell noise is a structure borne noise that radiates from the surface of the air induction system. The noise is driven by pulsating engine induction air and is perceived as annoying by vehicle passengers. The problem is aggravated by the vehicle design demands for low weight components packaged in an increasingly tight under hood environment. Shell noise problems are often not discovered until production intent parts are available and tested on the vehicle. Part changes are often necessary which threatens program timing. Shell noise should be analyzed in the air induction system design phase and a good shell noise analytical process and targets must be defined. Several air induction clean side ducts are selected for this study. The ducts shell noise is assessed in terms of material strength and structural stiffness. A measurement process is developed to evaluate shell noise of the air induction components. Noise levels are measured inside of the clean side ducts.
Technical Paper

A Case Study on Reducing the Fuel Pulse Noise from Gasoline Engine Injectors

2020-04-14
2020-01-1276
Vehicle NVH performance is a very important consideration for vehicle buyers in the marketplace. There are many noise sources from the fuel system to generate noise in a vehicle. Among them, the pressure pulsations due to the rapid opening and closing of gasoline engine injectors can cause undesirable fuel pulse noise inside the vehicle cabin. As the pressure pulsation propagates in the fuel supply line toward to rear end of the vehicle, the pressure energy is transferred from fuel lines to the vehicle underbody through clips and into the passenger compartment. It is crucial to attenuate the pressure pulsation inside the fuel line to reduce the fuel pulse noise. In this paper, a case study on developing an effective countermeasure to reduce the objectionable fuel pulse noise of a V8 gasoline injection system is presented. First, the initial interior noise of a prototype vehicle was tested and the objectionable fuel pulse noise was exhibited.
Technical Paper

A Comprehensive Approach for Estimation of Automotive Component Life due to Thermal Effects

2018-05-30
2018-37-0019
Due to stringent environmental requirements, the vehicle under-hood and underbody temperatures have been steadily increasing. The increased temperatures affect components life and therefore, more thermal protection measures may be necessary. In this paper, we present an algorithm for estimation of automotive component life due to thermal effects through the vehicle life. Traditional approaches consider only the maximum temperature that a component will experience during severe driving maneuvers. However, that approach does not consider the time duration or frequency of exposure to temperature. We have envisioned a more realistic and science based approach to estimate component life based on vehicle duty cycles, component temperature profile, frequency and characteristics of material thermal degradation. In the proposed algorithm, a transient thermal analysis model provides the exhaust gas and exhaust surface temperatures for all exhaust system segments, and for any driving scenario.
Technical Paper

A Comprehensive Study of Hole Punching Force for AHSS

2018-04-03
2018-01-0802
The elevated strength of advanced high strength steels (AHSS) leads to enormous challenges for the sheet metal processing, one of which is hole punching operation. The total tonnage must be estimated at each trimming stage to ensure successful cutting and protect the press machine. This paper presents the effects of hole punch configurations on the punching force with the consideration of punch shape, cutting clearance and material grade. The hole punching experiments were performed with DP590, DP980, DP1180 and one mild steel as a reference. The punching force coefficient is defined and presents a negative correlation with the material strength based on the experimental data. Surface quality was examined to analyze the damage accumulation during the punching process. The cutting mechanisms with various punch shapes were revealed through an extensive finite element simulation study.
Technical Paper

A DFSS Approach to Optimize the Second Row Floor Duct Using Parametric Modelling

2017-03-28
2017-01-0176
The main function of mobile air conditioning system in a vehicle is to provide the thermal comfort to the occupants sitting inside the vehicle at all environmental conditions. The function of ducts is to get the sufficient airflow from the HVAC system and distribute the airflow evenly throughout the cabin. In this paper, the focus is to optimize the rear passenger floor duct system to meet the target requirements through design for six sigma (DFSS) methodology. Computational fluid dynamics analysis (CFD) has been used extensively to optimize system performance and shorten the product development time. In this methodology, a parametric modeling of floor duct design using the factors such as crossectional area, duct length, insulation type, insulation thickness and thickness of duct were created using CATIA. L12 orthogonal design array matrix has been created and the 3D CFD analysis has been carried out individually to check the velocity and temperature.
Technical Paper

A DFSS approach study on the effects of vehicle cabin properties on HVAC system’s cooldown performance using 1D simulation

2020-04-14
2020-01-1258
Due to the increase in heat wave across the globe, maintaining the thermal comfort of passengers in a vehicle is becoming a challenge. Considering global warming, there is a need to shift towards greener refrigerants which in itself causes a marginal degradation in the air conditioning system performance. Also the emission norms and regulations demanding for a smaller engine if not for a hybrid or electric vehicle, there is a need for optimally designing the Heating Ventilation and Air Conditioning (HVAC) system since it is directly related with the efficiency of the vehicle. Hence maintaining the comfort level of the passengers needs further exploration than optimizing only the HVAC system. In an air conditioning system consisting of compressor, condenser, expansion valve, evaporator, blower etc., the refrigerant will be operating in two phases to absorb the heat from the cabin and rejecting it into the atmosphere.
Technical Paper

A Dynamic Programming Algorithm for HEV Powertrains Using Battery Power as a State Variable

2020-04-14
2020-01-0271
One of the first steps in powertrain design is to assess its best performance and consumption in a virtual phase. Regarding hybrid electric vehicles (HEVs), it is important to define the best mode profile through a cycle in order to maximize fuel economy. To assist in that task, several off-line optimization algorithms were developed, with Dynamic Programming (DP) being the most common one. The DP algorithm generates the control actions that will result in the most optimal fuel economy of the powertrain for a known driving cycle. Although this method results in the global optimum behavior, the DP tool comes with a high computational cost. The charge-sustaining requirement and the necessity of capturing extremely small variations in the battery State of Charge (SOC) makes this state vector a heavy variable. As things move fast in the industry, a rapid tool with the same performance is required.
Technical Paper

A Method Using FEA for the Evaluation of Tooling and Process Requirements to Meet Dimensional Objectives

2020-04-14
2020-01-0497
Dimensional Engineering concentrates effort in the early design phases to meet the dimensional build objectives in automotive production. Design optimization tools include tolerance stack up, datum optimization, datum coordination, dimensional control plans, and measurement plans. These tools are typically based on the assumption that parts are rigid and tooling dimensions are perfect. These assumptions are not necessarily true in automotive assemblies of compliant sheet metal parts on high volume assembly lines. To address this issue, FEA has been increasingly used to predict the behavior of imperfect and deformable parts in non-nominal tooling. This paper demonstrates an application of this approach. The complete analysis is divided into three phases. The first phase is a nominal design gravity analysis to validate the nominal design and tooling. In the second phase, the worst case scenarios are considered based on the previous programs to see their effects on assembly.
Technical Paper

A Novel Approach to Predict HVAC Noise Using 1D Simulation

2016-04-05
2016-01-0249
In recent years reducing the automobile HVAC (Heating Ventilation and automobile conditioning) noise inside the vehicle cabin is one of the main criterions for all OEMs to provide comfort level to the passengers. The primary function of the HVAC is to deliver more air to the cabin with less noise generation for various blower speeds. Designing the optimum HVAC with less noise is one of the major challenges for all automotive manufacturers and HVAC suppliers. During the design stage, physical parts are not available and hence the simulation technique helps to evaluate the noise level of HVAC. In this study, a computational 1D (one dimensional) analysis is carried out to compute the airflow noise originated from the HVAC unit and propagated to the passenger cabin. Modeling has been done using unigraphics and the analysis is carried out using the commercial 1D software GT suite.
Technical Paper

A Novel DoE based Front-End Airflow Target Setting Approach for Optimum HVAC Cool Down Performance

2018-04-03
2018-01-0786
The front-end air flow conditions have a substantial impact on the cool down performance of a vehicle Heating, Ventilation and Air-Conditioning (HVAC) system. The performance of a mobile HVAC system is analyzed by conducting tests on the vehicle in a drive cell, subjecting it to different drive cycles. This now can be done virtually using system level simulation or one-dimensional (1D) tools. Target values for condenser air inlet velocity and temperature for these HVAC performance focused drive cycles needs to be established during the development phase to meet the cool down functional objectives of the vehicle. Thus, in the early stages of development, 1D tools play a major role. Condenser air flow should be sufficient and the temperature should be as low as possible at different vehicle operating conditions to have good air-conditioning (AC) performance.
Technical Paper

A Physics Based Thermal Management Model for PHEV Battery Systems

2018-04-03
2018-01-0080
The demand for vehicles with electrified powertrain systems is increasing due to government regulations on fuel economy. The battery systems in a PHEV (Plug-in Hybrid-electric Vehicle) have achieved tremendous efficiency over past few years. The system has become more delicate and complex in architecture which requires sophisticated thermal management. Primary reason behind this is to ensure effective cooling of the cells. Hence the current work has emphasized on developing a “Physics based” thermal management modeling framework for a typical battery system. In this work the thermal energy conservation has been analyzed thoroughly in order to develop necessary governing equations for the system. Since cooling is merely a complex process in HEV battery systems, the underlying mechanics has been investigated using the current model. The framework was kept generic so that it can be applied with various architectures. In this paper the process has been standardized in this context.
Journal Article

A Practical Simulation Procedure using CFD to Predict Flow Induced Sound of a Turbocharger Compressor

2015-04-14
2015-01-0662
A turbocharger is currently widely used to boost performance of an internal combustion engine. Generally, a turbocharger consists of a compressor which typically is driven by an exhaust turbine. The compressor will influence how the low frequency engine pulsation propagates in the intake system. The compressor will also produce broad-band flow induced sound due to the turbulence flow and high frequency narrowband tonal sound which is associated with rotating blade pressures. In this paper, a practical simulation procedure based on a computational fluid dynamics (CFD) approach is developed to predict the flow induced sound of a turbocharger compressor. In the CFD model of turbocharger compressor, the unsteady, moving wheel, detached eddy simulation (DES) approach are utilized. In this manner, both the broad-band and narrow-band flow induced sound are directly resolved in the CFD computation.
Technical Paper

A Robust Cargo Box Structure Development using DFSS Methodology

2020-04-14
2020-01-0601
Cargo box is a key structure in a pickup truck used to hold cargo load. Therefore, a cargo box must be durable and robust under different ballast conditions when subjected to road load inputs. This paper discusses a DFSS approach to resolve a durability concern observed on box bed in its early development phase. Traditional methods and best practices resulted in multiple iterations without an obvious solution. Hence, Design For Six Sigma (DFSS) tools were proposed to find an robust and optimum solution. Key control factors/design parameters were identified, and L18 Orthogonal Array was chosen to optimize design using CAE tools. An optimum design selected was the one with minimum stress level and least stress variation. This design was confirmed to have significant improvement and robustness compared to the initial design. All other load cases are also checked and verified without concern for the selected design.
Technical Paper

A Robust Structure Analysis on Automotive Door Armrest

2019-01-09
2019-26-0006
An automobile door is one vital commodity which has its role in vehicle’s function, strength, safety, dynamics and aesthetic parameters. The door system comprises of individual components and sub-assemblies such as door upper, bolster, armrest, door main panel, map-pocket, handle, speaker and tweeter grille. Among them, armrest is an integral part which provides function and also takes care of some safety parameter for the customers. The basic function of an armrest is to provide ergonomic relief to occupant for resting his hand. Along with this, it also facilitates occupant safety during a side impact collision by absorbing the energy and not imparting the reactive force on occupant. Thus an armrest has evolved as a feature of passive safety. The armrest design should be stiff enough to withstand required elbow load condition with-in the acceptable deflection criteria. On the other hand, armrest has to absorb the dynamic force by deflecting proportionally to the side impact load.
Technical Paper

A Sensitivity Study on Inertance Frequency Response Function through Non-Parametric Variability Approach

2017-03-28
2017-01-0445
In recent years, there is increasing demand for every CAE engineer on their confidence level of the virtual simulation results due to the upfront robust design requirement during early stage of an automotive product development. Apart from vehicle feel factor NVH characteristics, there are certain vibration target requirements at system or component level which need to be addressed during design stage itself in order to achieve the desired functioning during vehicle operating conditions. Vehicle passive safety system is one which primarily consists of acceleration sensors, control module and air-bag deployment system. Control module’s decision is based on accelerometer sensor signals so that its mounting locations should meet the sufficient inertance or dynamic stiffness performance in order to avoid distortion in signals due to its structural resonances.
Technical Paper

A Simulation-Based Approach to Incorporate Uncertainty in Reliability Growth Planning (RGP)

2020-04-14
2020-01-0742
Reliability Growth Planning (RGP) is one of the essential parts of reliability improvement process during developing a new complex engineering system. It should receive more attention, especially in the current situation of industry, when a short delay in launching a new product causes the loss of market share. Current models in the reliability growth planning are more deterministic in nature, meaning that they use exact values for the parameters of the model. However, there is always uncertainty in the RG model parameters. This paper proposes a new approach, based on the historical data and enhanced by the simulation approach, which incorporates uncertainty in the reliability growth planning process. Results of the new model are more realistic and accurate, since they are based on the historical data.
Journal Article

A Stress-Based Non-Proportionality Parameter for Considering the Resistance of Slip Systems of Shear Failure Mode Materials

2016-04-11
2016-01-9081
Multiaxial loading on mechanical products is very common in the automotive industry, and how to design and analyze these products for durability becomes an important, urgent task for the engineering community. Due to the complex nature of the fatigue damage mechanism for a product under multiaxial state of stresses/strains which are dependent upon the modes of loading, materials, and life, modeling this behavior has always been a challenging task for fatigue scientists and engineers around the world. As a result, many multiaxial fatigue theories have been developed. Among all the theories, an existing equivalent stress theory is considered for use for the automotive components that are typically designed to prevent Case B cracks in the high cycle fatigue regime.
Technical Paper

A Study on Bolted Joint Finite Element Modeling for Vehicle Level Durability Analysis

2020-04-14
2020-01-0178
Bolted joints are widely used connections in automotive vehicle structures. However, it has been a challenge to accurately predict static and fatigue behavior of the sheet metal adjacent to the bearing area of bolted joints when linear analysis approach is used. This paper describes an experiment study on static and fatigue behavior of sheet metal adjacent to bearing area of bolted joints which are typically found on vehicles. These joints cover different bolt sizes (M6 to M14), and nut types (hex nut, hex flange nut, round nut, welded nut etc.). Different sheet metal material grades were selected which were, mild steel, high strength steel, dual phase steel and aluminum. The joints were subjected to coach-peel loading condition, because fastened joints have lowest strengths under this condition. 25 different joint combinations were included in this experimental study. For both static and fatigue tests, three samples were tested for each joint type and loading condition combination.
X