Refine Your Search

Topic

Author

Search Results

Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

A Comparative Study of the Fatigue Behavior of Spot Welded and Mechanically Fastened Aluminum Joints

1995-02-01
950710
The cyclic behavior of single overlap aluminum joints joined through a number of different methods has been investigated using Alcan 5754-O, an alloy that potentially could be used in structural applications. Overlap shear tests of spot welded, clinched and riveted joints are compared on the basis of their fatigue performance. The fatigue response of the spot welded joint was the baseline to which the other fasteners were compared. Test results showed an improvement of approximately 25% for both the mechanical clinch joints and aluminum rivets in fatigue strength at 106 cycles. The most significant improvement in fatigue strength of 100% was found for the self piercing rivets at 106 cycles. The failure behavior of the various joining methods is discussed as well as the surface appearance.
Technical Paper

A Cycle Counting Algorithm for Fatigue Damage Analysis

1974-02-01
740278
A cycle counting algorithm that will reduce a complex history into a series of discrete cycles is presented. The cycles determined by this technique are defined as closed stress-strain hysteresis loops of the type obtained from constant amplitude tests. Using the computer cycle counting algorithm, life predictions were made and compared with experimental results. These predictions were found to be typically within a ±3 factor of error. Also, the computer counting method was found to yield more accurate life predictions when compared to the histogram and range counting methods.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Technical Paper

A Time-Domain Fatigue Life Prediction Method for Vehicle Body Structures

1996-02-01
960567
Fatigue analysis using finite element models of a full vehicle body structure subjected to proving ground durability loads is a very complex task. The current paper presents an analytical procedure for fatigue life predictions of full body structures based on a time-domain approach. The paper addresses those situations where this kind of analysis is necessary. It also discusses the major factors (e.g., stress equivalencing procedure, cycle counting method, event lumping and load interactions) which affect fatigue life predictions in the procedure. A comparison study is conducted which explores the combination of these factors favorable for realistic fatigue life prediction. The concepts are demonstrated using a body system model of production size.
Technical Paper

A Vehicle Micro Corrosion Environmental Study of Field and Proving Ground Tests

2001-03-05
2001-01-0646
This paper presents the progress of an ongoing vehicle micro corrosion environment study. The goal of the study is to develop an improved method for estimating vehicle corrosion based on the Total Vehicle Accelerated Corrosion Test at the Arizona Proving Ground (APG). Although the APG test greatly accelerates vehicle corrosion compared to the field, the “acceleration factor” varies considerably from site-to-site around the vehicle. This method accounts for the difference in corrosivity of various local corrosion environments from site-to-site at APG and in the field. Correlations of vehicle microenvironments with the macroenvironment (weather) and the occurrence of various environmental conditions at microenvironments are essential to the study. A comparison of results from APG versus field measurements generated using a cold rolled steel based corrosion sensor is presented.
Technical Paper

Aluminum Rail Rivet and Steel Rail Weld DOE and CAE Studies for NVH

2001-04-30
2001-01-1608
Vehicle body with aluminum riveted construction instead of steel welded one will be a big challenge to NVH. In this paper, aluminum and steel rails with the dimensions similar to the rear rail portion of a typical mid-size sedan were fabricated. Rivets were used to assemble the aluminum rails while welds were used to assemble the steel rails. Adhesive, rivet/weld spacing, and rivet/weld location were the three major factors to be studied and their impact on NVH were investigated. The DOE matrix was developed using these three major factors. Modal tests were performed on those rails according to the DOE matrix. The FEA models corresponding to the hardware were built. CAE modal analysis were performed and compared with test data. The current in-house CAE modeling techniques for spot weld and adhesive were evaluated and validated with test data.
Technical Paper

An Adaptable, Multitest, Multichannel Fatigue Test System

1995-02-01
950703
A highly adaptable fatigue testing computer system is presented for controlling single or multichannel test machines. The system imposes most common varieties of waveforms and also provides time synchronization between channels, such as in the case of variable amplitude biaxial load histories, and monitors various feedback signals for both data acquisition and alarm purposes. The program operates in a real-time Unix system as a separate stand-alone process. Communication with other users or the operator is done only through a reserved common block of shared memory. This feature allows control and monitoring of all tests over the computer network. A user can simply login remotely and check the test or start a data acquisition task from any workstation in the company, and then take the data files and analyze them on other computers. This paper describes the operation of the software, the methodology behind the hardware selection and the software structure.
Technical Paper

An Investigation on the Fatigue Behavior of Balanced and Unbalanced Epoxy-Aluminum Single Lap Joints

2015-04-14
2015-01-0551
The fatigue strength and failure behavior of A5754-O adhesively bonded single lap joints by a hot-curing epoxy adhesive were investigated in this paper. The single lap joints tested include balanced substrate joints (meaning same thickness) and unbalanced substrate joints, involving combinations of different substrate thicknesses. Cyclic fatigue test results show that the fatigue strength of bonded joints increase with the increasing substrate thickness. SEM and Energy Dispersive X-ray (EDX) were employed to investigate the failure mode of the joints. Two fatigue failure modes, substrate failure and failure within the adhesive were found in the testing. The failure mode of the joint changes from cohesive failure to substrate failure as the axial load is decreased, which reveals a fatigue resistance competition between the adhesive layer and the aluminum substrate.
Technical Paper

An Ultra-Light Thin Sliding Door Design - A Multi-Product Multi-Material Solution

2002-03-04
2002-01-0391
Sliding door designs are applied to rear side doors on vans and other large vehicles with a trend towards dual sliding doors with power operation. It is beneficial for the vehicle user to reduce the weight of and space occupied by these doors. Alcoa, in conjunction with Ford, has developed a multi-product, multi-material-based solution, which significantly reduces the cost of an aluminum sliding door and provides both consumer delight and stamping-assembly plant benefits. The design was successfully demonstrated through a concept readiness/technology demonstration program.
Technical Paper

An Ultrasonic Technique for Measuring the Elastic Constants of Small Samples

1995-02-01
950897
Using instrumentation designed for the ultrasonic measurement of thickness, a technique has been devised for measuring the isotropic elastic constants of small samples, i. e., samples 1 mm in thickness and a minimum of 5 mm in other dimensions. Young's modulus, the shear modulus and Poisson's ratio are calculated from measurements of density and ultrasonic shear and longitudinal wave velocities. Samples of valve train materials, including chill cast iron, low alloy steel, tool steel, stainless steel, a nickel-base superalloy, and a powder metal alloy were machined from components and analyzed. The magnitude of the measured values of the elastic constants are reasonable when compared with published values. The measurement error on all the constants is estimated to be less than 1%. Moduli determined by this method can be used in finite element analyses to improve designs.
Technical Paper

Application of CAE Nonlinear Crash Analysis to Aluminum Automotive Crashworthiness Design

1995-04-01
951080
After establishing the performance requirements and initial design assumptions, CAE concept models are used to set targets for major structural components to achieve desirable crash performance. When the designs of these major components become available they are analyzed in detail using nonlinear crash finite element models to evaluate their performance. All these components are assembled together later in a full car model to predict the overall vehicle crash performance. If the analysis shows that the targets are met, the design drawings are released for prototype fabrication. When CAE tools are effectively used, it will reduce product development cycle time and the number of prototypes. Crash analysis methodology has been validated and applied for steel automotive product development. Recently, aluminum is replacing steel for lighter and more fuel efficient automobiles. In general aluminum has quite different performance from steel, in particular with lower ductility.
Technical Paper

Applications of High Strength Steels in Hydroforming Dual Phase Vs. HSLA

2001-03-05
2001-01-1133
Dual Phase (DP) high strength steel is widely used in Europe and Japan for automotive component applications, and has recently drawn greater attention in the North American automotive industry for improving crash performance and reducing weight. In comparison with high-strength low-alloy (HSLA) steel grades with similar initial yield strength, DP steel has the following advantages: higher strain hardening, higher energy absorption, higher fatigue strength, higher bake hardenablility, and no yield point elongation. This paper compares the performance of DP and HSLA steel grades before, during, and after hydroforming. Computer simulation results show that DP steel demonstrates more uniform material flow during hydroforming, better crash performance and less wrinkling tendency.
Journal Article

Axial Crash Testing and Finite Element Modeling of A 12-Sided Steel Component

2010-04-12
2010-01-0379
To improve the energy absorption capacity of front-end structures during a vehicle crash, a novel 12-sided cross-section was developed and tested. Computer-aided engineering (CAE) studies showed superior axial crash performance of the 12-sided component over more conventional cross-sections. When produced from advanced high strength steels (AHSS), the 12-sided cross-section offers opportunities for significant mass-savings for crash energy absorbing components such as front or rear rails and crush tips. In this study, physical crash tests and CAE modeling were conducted on tapered 12-sided samples fabricated from AHSS. The effects of crash trigger holes, different steel grades and bake hardening on crash behavior were examined. Crash sensitivity was also studied by using two different part fabrication methods and two crash test methods. The 12-sided components showed regular folding mode and excellent energy absorption capacity in axial crash tests.
Technical Paper

Bending Fatigue Behavior of Carburized Gear Steels: Four-Point Bend Test Development and Evaluation

1996-02-01
960977
The ability to evaluate the bending fatigue behavior of carburized low alloy steels in a laboratory and relate these measurements to performance of high contact ratio helical gears is important to the design and development of transmissions. Typical methods of evaluating bending fatigue performance of carburized gear steels do not directly represent helical planetary gears because they lack the geometric and loading conditions of planetary pinions. The purpose of this study is twofold; 1) development of a lab fatigue test to represent the fatigue performance of planetary pinion gears tested in a dynamometer and 2) evaluation of the influence of alloy content on bending fatigue performance of two steel alloys. The steels under evaluation were modified 8620M and 4615M alloys machined into bend bars with a notch representing a gear root and carburized to a case depth of approximately 0.35 mm (using the same carburizing cycle as the planetary pinion gears).
Technical Paper

Biaxial Torsion-Bending Fatigue of SAE Axle Shafts

1991-02-01
910164
Variable amplitude torsion, bending, and combined torsion and bending fatigue tests were performed on an axle shaft. The moment inputs used were taken from the respective history channels of a cable log skidder vehicle axle. Testing results indicated that combined variable amplitude loading lives were shorter than the lives of specimens subjected to bending or torsion alone. Calculations using strain rosette readings indicated that principle strains were most active around specific angles but also occurred with lesser magnitudes through a wider angular range. Over the course of a biaxial test, cyclic creep narrowly limited the angles and magnitudes of the principal strains. This limitation was not observed in the calculated principal stress behavior. Simple life predictions made on the measured strain gage histories were non-conservative in most cases.
Technical Paper

Bolt-Load Retention Behavior of Die-Cast AZ91D and AE42 Magnesium

1998-02-23
980090
The effect of temperature and preload on the bolt load retention (BLR) behavior of AZ91D and AE42 magnesium die castings was investigated. The results were compared to those of 380 aluminum die castings. Test temperatures from 125 to 175°C and preloads from 7 to 28 kN were investigated. The loss of preload for AZ91D was more sensitive to temperature than that observed for AE42, especially at low preloads. In general, retained bolt-load was lowest in AZ91D. All test assemblies were preloaded at room temperature and load levels increased when the assemblies reached test temperature. The load-increase was dependent on the preload level, test temperature, alloy, and results from thermal expansion mismatch between the steel bolt and the magnesium alloy components, mitigated by the onset of primary creep. Thermal exposure (aging) of AZ91D at 150°C improved BLR behavior.
Technical Paper

Brake Integrated Hydraulic Actuation System Master Cylinder

1983-02-01
830412
This paper presents the design and operation of a new stepped bore master cylinder (fast-fill) which also integrates the rear brake proportioning valves and brake failure warning device in one major assembly. This design optimizes weight, performance and package together with several unique design features. It incorporates a combination of a plastic reservoir, permanent mold aluminum body, steel pistons, and minaturized steel proportioning valves resulting in a significant weight and cost reduction versus equivalent hydraulic actuation systems.
Technical Paper

Collaborative Development of Lightweight Metal and Alloys for Automotive Applications

2002-06-03
2002-01-1938
In September 1993, the Partnership for a New Generation of Vehicles (PNGV) program, initiated a cooperative research and development (R&D) program between the federal government and the United States Council Automotive Research (USCAR) to develop automotive technologies to reduce the nation's dependence on petroleum and reduce emissions of greenhouse gases by improving fuel economy. A key enabler for the attainment of these goals is a significant reduction in vehicle weight. Thus the major focus of the PNGV materials program is the development of materials and technologies that would result in the reduction of vehicle weight by up to 40%. The Automotive Lightweighting Materials (ALM) Program in the Office of Advanced Automotive Technologies (OAAT) of the Department of Energy (DOE), the PNGV Materials Technical Team and the United States Automotive Materials Partnership (USAMP) collaborate to conduct research and development on these materials.
Technical Paper

Comparison of Mean Stress Correction Methods for Fatigue Life Prediction

2000-03-06
2000-01-0778
In design for durability, it is generally believed that a compressive mean stress is beneficial and a tensile mean stress is detrimental. Quantitatively the effect of mean stress on fatigue life however is still inconclusive and may very well depend on both the material used and the loading conditions. Over the years, many models have been proposed to help predict mean stress effects. For example, in the long life region, Goodman's formula is widely used, while the Smith-Watson-Topper damage parameter seems the most popular for use in computerized local strain based fatigue tools. In this paper, several frequently cited mean stress correction methods together with the most recent crack closure based method are compared in various ways. Particular emphasis is given to the effect of yield level mean stresses, which has been traditionally neglected but is of practical importance to the ground vehicle industry.
X