Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparison of Total and Speciated Hydrocarbon Emissions from an Engine Run on Two Different California Phase 2 Reformulated Gasolines

1994-10-01
941972
New regulations from the state of California have established, for the first time, reactivity-based exhaust emissions standards for new vehicles and require that any clean alternative fuels needed by these vehicles be made available. Contained in these regulations are provisions for “reactivity adjustment factors” which will provide credit for vehicles which run on reformulated gasoline. The question arises: given two fuels of different chemical composition, but both meeting the criteria for CA Phase 2 gasoline (reformulated gasoline), how different might the specific reactivity of the exhaust hydrocarbons be? In this study we explored this question by examining the engine-out HC emissions from a single-cylinder version of the 5.4 L modular truck engine run on two different CA Phase 2 fuels.
Technical Paper

A Comparison of the Emissions from a Vehicle in Both Normal and Selected Malfunctioning Operation Modes

1996-10-01
961903
A 1990 Ford Taurus operated on reformulated gasoline was tested under three modes of malfunction: disabled heated exhaust gas oxygen (HEGO) sensor, inactive catalytic converter, and controlled misfire. The vehicle was run for four U.S. EPA UDDS driving schedule (FTP-75) tests at each of the malfunction conditions, as well as under normal operating conditions. An extensive set of emissions data were collected. In addition to the regulated emissions (HC, CO, and NOx), a detailed chemical analysis was carried out to determine the gas- and particle-phase non-regulated emissions. The effect of vehicle malfunction on gas phase emissions was significantly greater than it was on particle phase emissions. For example, CO emissions ranged from 2.57 g/mi (normal operation) to 34.77 g/mi (disable HEGO). Total HCs varied from 0.22 g/mi (normal operation) to 2.21 g/mi (blank catalyst). Emissions of air toxics (1,3-butadiene, benzene, acetaldehyde, and formaldehyde) were also significantly effected.
Technical Paper

A Dynamometer Study of Off-Cycle Exhaust Emissions - The Auto/Oil Air Quality Improvement Research Program

1997-05-01
971655
Four vehicle fleets, consisting of 3 to 4 vehicles each, were emission tested on a 48″ roll chassis dynamometer using both the FTP urban dynamometer driving cycle and the REP05 driving cycle. The REP05 cycle was developed to test vehicles under high speed and high load conditions not included in the FTP. The vehicle fleets consisted of 1989 light-duty gasoline vehicles, 1992-93 limited production FFV/VFV methanol vehicles, 1992-93 compressed natural gas (CNG) vehicles and their gasoline counterparts, and a 1992 production and two prototype ethanol FFV/VFV vehicles. All vehicles (except the dedicated CNG vehicles) were tested using Auto/Oil AQIRP fuels A and C2. Other fuels used were M85 blended from A and C2, E85 blended from C1, which is similar to C2 but without MTBE, and four CNG fuels representing the range of in-use CNG fuels. In addition to bag measurements, tailpipe exhaust concentration and A/F data were collected once per second throughout every test.
Technical Paper

A Gasoline Engine Cycle that Permits High Expansion Operation with Reduced Part Load Throttling Losses by Modulating Charge Mass and Temperature

1986-02-01
860327
A four-stroke, spark-ignition engine is described that seeks to achieve high expansion ratio and low throttling losses at light load, whilst retaining good knock resistance at full load operation and without the need for expensive mechanical changes to the engine. The engine does, however, incorporate a second inlet (transfer) valve and associated transfer port linked to the intake port. The timing of the transfer valve is different from that of the main inlet valve. Load modulation is achieved by control of the gas outflow from the transfer port. A computer model of the engine is first validated against measured data from a conventional engine. Comparisons are made of incylinder pressure at part load conditions, total air flowrate through the engine and intake port air velocities as a function of crank angle position.
Technical Paper

A Method for the Speciation of Diesel Fuel and the Semi-Volatile Hydrocarbon Fraction of Diesel-Fueled Vehicle Exhaust Emissions

1995-10-01
952353
Although much has been learned in recent years about the atmospheric reactivity of the hydrocarbon (HC) emissions from gasoline-fueled vehicles, there is only a limited database of corresponding information for exhaust emissions from diesel-fueled vehicles. An assessment of exhaust reactivity requires “speciation”, or measurement of the individual species of the HC fraction. The HC exhaust emissions are a complex mixture of unburned and partially burned fuel components. Because diesel fuel contains a much higher molecular weight range (typically C9-C26) than gasoline (typically C5-C12), new methodology was required to accommodate the collection and analysis of the >C12 fraction of the HC exhaust. As part of a study of the effects of fuel and other factors on the chemical nature of diesel emissions, we have developed a method for the collection and analysis of the semivolatile or heavy HC (>C12) fraction of the exhaust.
Technical Paper

A Rational Approach to Qualifying Materials for Use in Fuel Systems

2000-06-19
2000-01-2013
About 10 years ago in the US, an automotive OEM consortium formed the Oxygenated Fuels Task Force which in turn created the SAE Cooperative Research Project Group 2 to develop a simple rational method for qualifying materials. At that time the focus was Methanol/Gasoline blends. This work resulted in SAE J1681, Gasoline/Methanol Mixtures for Materials Testing. Recently this document was rewritten to make it the single, worldwide, generic source for fuel system test fluids. The paper will describe the rationale for selecting the fuel surrogate fluids and why this new SAE standard should replace all existing test fuel or test fluid standards for fuel system materials testing.
Technical Paper

A Software Program for Carrying Out Multi-Purpose Exhaust Composition Calculations

1997-02-24
970749
It is frequently useful to calculate the theoretical composition of the major components of vehicle exhaust. A software program has been written in Basic (or Quick Basic) which allows the convenient calculation of volume percents of CO, CO2, O2, H2, and H2O from fuel composition (H/C and O/C ratios), the water content (dew point) of the combustion air, and a chosen stoichiometry (air/fuel ratio). The program considers the Water Gas Shift reaction and the production of hydrogen under fuel rich conditions. The program is valid for both standard gasolines and oxygenated blends. Vehicle emissions data, collected to compare values calculated by the program with actual experimentally determined values from vehicle exhaust, show good agreement for measurements made at a series of air/fuel ratios ranging from lambda of 0.85-1.2.
Technical Paper

Advanced Emission Speciation Methodologies for the Auto/Oil Air Quality Improvement Research Program - I. Hydrocarbons and Ethers

1992-02-01
920320
An analytical method for the determination of hydrocarbon and ether emissions from gasoline-, methanol-, and flexible-fueled vehicles is described. This method was used in Phase I of the Auto/Oil Air Quality Improvement Research Program to provide emissions data for various vehicles using individual reformulated gasolines and alternate fuels. These data would then be used for air modeling studies. Emission samples for tailpipe, evaporative, and running loss were collected in Tedlar bags. Gas chromatographic analysis of the emissions samples included 140 components (hydrocarbons, ethers, alcohols and aldehydes) between C1 and C12 in a single analysis of 54-minutes duration. Standardization, quality control procedures, and inter-laboratory comparisons developed and completed as part of this program are also described.
Technical Paper

An Evaluation of Local Heating as a Means of Fuel Evaporation for Gasoline Engines

1986-02-01
860246
The technique of evaporating fuel by localized heating before entering the intake manifold is evaluated as a means of improving A/F ratio control. Techniques currently in use are briefly discussed, and attempts to analyze fuel evaporation in S.I. engines are reviewed. A test fixture which includes all the essential features of production feasible hardware is used to develop a basis of understanding for the evaporation process. Tests are conducted on a flow bench using water as “fuel”, and on an engine using isooctane and gasoline. A heat-mass transfer analogy is described and used to predict evaporation rates for water and isooctane. Predicted and measured rates are compared for both bench and engine tests. Engine tests with gasoline show the ability of the test configuration to evaporate all part throttle fuel flow before it enters the intake manifold.
Technical Paper

An Investigation to Determine the Exhaust Particulate Size Distributions for Diesel, Petrol, and Compressed Natural Gas Fuelled Vehicles

1996-05-01
961085
In this paper, we present the results of a series of experiments to determine the exhaust particulate size distributions from a number of diesel, gasoline and compressed natural gas (CNG) fuelled vehicles. The results show that all three types of vehicle produce significant populations of particulates under certain operating conditions. Particulates produced by gasoline and CNG engines tend to be smaller than for diesel engines. At low loads, there is a significant particulate distribution for diesel engines but much lower particulate numbers for both gasoline and CNG vehicles. Under these conditions, the gasoline particulate distribution has little structure but the CNG distribution is clearly bimodal. At higher loads, the number of particulates produced by diesel vehicles increases by an order of magnitude from idle and both the CNG and gasoline distributions are comparable in peak height. The diesel vehicle produces a much larger particulate volume than gasoline or CNG.
Technical Paper

Application of Catalyzed Hydrocarbon Traps to Reduce Hydrocarbon Emissions from Ethanol Flex-Fuel Vehicles

1999-10-25
1999-01-3624
Catalyzed hydrocarbon traps have shown promise in reducing cold-start tailpipe hydrocarbon emissions from gasoline powered vehicles. In this paper, we report the use of catalyzed hydrocarbon trap technology to reduce the non-methane hydrocarbon emissions from a flex-fuel vehicle that can operate on fuel mixtures ranging from pure gasoline to 85% ethanol/15% gasoline. We have found that hydrocarbon traps show a substantially greater reduction in hydrocarbon emissions when used with ethanol fuel than with gasoline. We present laboratory and vehicle test results that show that tailpipe non-methane hydrocarbon emissions from a flex-fuel vehicle can be reduced by 43% when using 85% ethanol/15% gasoline fuel and 16% when using gasoline fuel from a baseline exhaust system using a three-way catalyst. These results were obtained using a catalyzed hydrocarbon trap specifically formulated for use with ethanol fuel.
Technical Paper

Compound Electroformed Metal Nozzles for High Pressure Gasoline Injection

1998-02-23
980818
The objective of this research was to evaluate the effects that higher fluid injection pressures and nozzle geometry have on compound fuel injector nozzle performance. Higher pressures are shown to significantly reduce droplet size, increase the discharge coefficient and reduce the overall size of a nozzle spray. It is also shown that the geometry has a significant effect on nozzle performance, and it can be manipulated to give a desired spray shape.
Technical Paper

Design Considerations for Natural Gas Vehicle Catalytic Converters

1993-11-01
933036
Bench reactor experiments were carried out to investigate the effects of operating temperature, precious metal loading, space velocity, and air-fuel (A/F) ratio on the performance of palladium (Pd) catalysts under simulated natural gas vehicle (NGV) exhaust conditions. The performance of these catalysts under simulated gasoline vehicle (GV) conditions was also investigated. In the case of simulated NGV exhaust, where methane was used as the prototypical hydrocarbon (HC) species, peak three-way conversion was obtained under richer conditions than required with simulated GV exhaust (propane and propene HC species). Moreover, the hydrocarbon efficiency of the catalyst under simulated NGV exhaust conditions was more sensitive to both A/F ratio and perturbations in A/F ratio than the HC efficiency under GV exhaust conditions.
Technical Paper

Detection of Spark Knock Oscillations: Dependence on Combustion Temperature

1997-02-24
970038
The frequency of the pressure oscillations caused by spark knock depends on the temperature-dependent speed of sound in the combustion gases. Engine dynamometer tests showed a 6.5% (390 Hz) reduction in the knock fundamental frequency as the air/fuel ratio was swept from 13:1 to 20:1. Engine cycle simulation model predictions of maximum burned gas temperatures correlate well with the data. A robust knock detection system must be insensitive to the range of burned gas temperature (frequency of pressure oscillations) that will be encountered with a particular engine control system operating under the expected range of fuels and environmental conditions.
Technical Paper

Development of an Al2O3/ZrO2-Composite High-Accuracy NOx Sensor

2010-04-12
2010-01-0041
In 1999, the first generation NOx sensor from NGK Spark Plug, Co., Ltd. was commercialized for use in gasoline LNT NOx after-treatment systems [ 1 ]. Since then, as emissions regulations and OBD requirements have become more stringent, the demand for a high-accuracy NOx sensor with fast light-off has increased, particularly for diesel after-treatment systems. To meet such market demands, NGK Spark Plug, Co., Ltd. has developed, in collaboration with Ford Motor Company, a second generation NOx sensor.
Journal Article

Development of the Combustion System for a Flexible Fuel Turbocharged Direct Injection Engine

2010-04-12
2010-01-0585
Gasoline turbocharged direct injection (GTDI) engines, such as EcoBoost™ from Ford, are becoming established as a high value technology solution to improve passenger car and light truck fuel economy. Due to their high specific performance and excellent low-speed torque, improved fuel economy can be realized due to downsizing and downspeeding without sacrificing performance and driveability while meeting the most stringent future emissions standards with an inexpensive three-way catalyst. A logical and synergistic extension of the EcoBoost™ strategy is the use of E85 (approximately 85% ethanol and 15% gasoline) for knock mitigation. Direct injection of E85 is very effective in suppressing knock due to ethanol's high heat of vaporization - which increases the charge cooling benefit of direct injection - and inherently high octane rating. As a result, higher boost levels can be achieved while maintaining optimal combustion phasing giving high thermal efficiency.
Technical Paper

Dilution Effects on the Controlled Auto-Ignition (CAI) Combustion of Hydrocarbon and Alcohol Fuels

2001-09-24
2001-01-3606
This paper presents results from an experimental programme researching the in-cylinder conditions necessary to obtain homogenous CAI (or HCCI) combustion in a 4-stroke engine. The fuels under investigation include three blends of Unleaded Gasoline, a 95 RON Primary Reference Fuel, Methanol, and Ethanol. This work concentrates on establishing the CAI operating range with regard to Air/Fuel ratio and Exhaust Gas Re-circulation and their effect on the ignition timing, combustion rate and variability, Indicated thermal efficiency, and engine-out emissions such as NOx. Detailed maps are presented, defining how each of the measured variables changes over the entire CAI region. Results indicate that the alcohols have significantly higher tolerance to dilution than the hydrocarbon fuels tested. Also, variations in Gasoline blend have little effect on any of the combustion parameters measured.
Technical Paper

Economic, Environmental and Energy Life-Cycle Assessment of Coal Conversion to Automotive Fuels in China

1998-11-30
982207
A life-cycle assessment (LCA) has been developed to help compare the economic, environmental and energy (EEE) impacts of converting coal to automotive fuels in China. This model was used to evaluate the total economic cost to the customer, the effect on the local and global environments, and the energy efficiencies for each fuel option. It provides a total accounting for each step in the life cycle process including the mining and transportation of coal, the conversion of coal to fuel, fuel distribution, all materials and manufacturing processes used to produce a vehicle, and vehicle operation over the life of the vehicle. The seven fuel scenarios evaluated in this study include methanol from coal, byproduct methanol from coal, methanol from methane, methanol from coke oven gas, gasoline from coal, electricity from coal, and petroleum to gasoline and diesel. The LCA results for all fuels were compared to gasoline as a baseline case.
Journal Article

Effect of Ethanol on Part Load Thermal Efficiency and CO2 Emissions of SI Engines

2013-04-08
2013-01-1634
This paper presents engine dynamometer testing and modeling analysis of ethanol compared to gasoline at part load conditions where the engine was not knock-limited with either fuel. The purpose of this work was to confirm the efficiency improvement for ethanol reported in published papers, and to quantify the components of the improvement. Testing comparing E85 to E0 gasoline was conducted in an alternating back-to-back manner with multiple data points for each fuel to establish high confidence in the measured results. Approximately 4% relative improvement in brake thermal efficiency (BTE) was measured at three speed-load points. Effects on BTE due to pumping work and emissions were quantified based on the measured engine data, and accounted for only a small portion of the difference.
Technical Paper

Effect of Fuel Dissolved in Crankcase Oil on Engine-Out Hydrocarbon Emissions from a Spark-Ignited Engine

1997-10-01
972891
A single-cylinder, spark-ignited engine was run on a certification test gasoline to saturate the oil in the sump with fuel through exposure to blow-by gas. The sump volume was large relative to production engines making its absorption-desorption time constant long relative to the experimental time. The engine was motored at 1500 RPM, 90° C coolant and oil temperature, and 0.43 bar MAP without fuel flow. Exhaust HC concentrations were measured by on-line FID and GC analysis. The total motoring HC emissions were 150 ppmC1; the HC species distribution was heavily weighted to the low-volatility components in the gasoline. No high volatility components were visible. The engine was then fired on isooctane fuel at the above conditions, producing a total engine-out HC emission of 2300 ppmC1 for Φ = 1.0 and MBT spark timing.
X