Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Automated Migration of Legacy Functions and Algorithms to Model Based Design

2008-04-14
2008-01-0747
Automotive companies have invested a fortune over the last three decades developing real-time embedded control strategies and software to achieve desired functions and performance attributes. Over time, these control algorithms have matured and achieved optimum behavior. The companies have vast repositories of embedded software for a variety of control features that have been validated and deployed for production. These software functions can be reused with minimal modifications for future applications. The companies are also constantly looking for new ways to improve the productivity of the development process that may translate into lower development costs, higher quality and faster time-to-market. All companies are currently embracing Model Based Design (MBD) tools to help achieve the gains in productivity. The most cost effective approach would be to reuse the available legacy software for carry-over features while developing new features with the new MBD tools.
Technical Paper

Developing a Real-World, Second-by-Second Driving Cycle Database through Public Vehicle Trip Surveys

2019-07-08
2019-01-5074
Real-world second-by-second vehicle driving cycle data is very important for vehicle research and development. A project solely dedicated to generating such information would be tremendously costly and time consuming. Alternatively, we developed such a database by utilizing two publicly available passenger vehicle travel surveys: 2004-2006 Puget Sound Regional Council (PSRC) Travel Survey and 2011 Atlanta Regional Commission (ARC) Travel Survey. The surveys complement each other - the former is in low time resolution but covers driver operation for over one year whereas the latter is in high time resolution but represents only one-week-long driving operation. After analyzing the PSRC survey, we chose 382 vehicles, each of which continuously operated for one year, and matched their trips to all the ARC trips. The matching is carried out based on trip distance first, then on average speed, and finally on duration.
Technical Paper

Efficient Method for Modeling and Code Generation of Custom Functions

2011-04-12
2011-01-0055
Custom functions are widely used in real-time embedded automotive applications to conserve scarce processor resources. Typical examples include mathematical functions, filtering routines and lookup tables. The custom routines are very efficient and have been in production for many years [ 1 ]. These hand-crafted functions can be reused in new control algorithm designs being developed using Model Based Design (MBD) tools. The next generation of vehicle control software may contain a mix of both automatically generated software and manually developed code. At Ford Motor Company, the code is automatically generated from control algorithm models that are developed using The MathWorks tool chain. Depending on the project-specific needs, the control algorithm models are automatically translated to efficient C code using either The Math Works Real-Time Workshop Embedded Coder (RTW-EC) or dSPACE TargetLink production code generators.
Technical Paper

GreenZone Driving for Plug In Hybrid Electric Vehicles

2012-04-16
2012-01-1004
Plugin Hybrid Electric Vehicles (PHEV) have a large battery which can be used for electric only powertrain operation. The control system in a PHEV must decide how to spend the energy stored in the battery. In this paper, we will present a prototype implementation of a PHEV control system which saves energy for electric operation in pre-defined geographic areas, so called Green Zones. The approach determines where the driver will be going and then compares the route to a database of predefined Green Zones. The control system then reserves enough energy to be able to drive the Green Zone sections in electric only mode. Finally, the powertrain operation is modified once the vehicle enters the Green Zone to ensure engine operation is limited. Data will be presented from a prototype implementation in a Ford Escape PHEV
Technical Paper

Improving the Efficiency of Production Level Algorithm Development for an SUV HEV Powertrain

2004-10-25
2004-01-3039
Recent events in the world have refocused auto manufacturers to design and produce more fuel efficient and environmentally friendly vehicles. One method to improve the fuel efficiency of vehicles is the hybridization of the vehicle's powertrain. Ford Motor Company is developing a hybrid electric powertrain for the Escape SUV. To quickly develop a control system to smoothly manage two propulsion systems as if it were a conventional powertrain is a difficult challenge. To meet that challenge, extensive use of Computer Aided Engineering simulation and analysis is necessary to quickly design, develop and verify control algorithms ready for production. This paper will present the design and development methodology for the production control algorithms to seamlessly move from the simulation environment to the embedded microcontroller.
Technical Paper

Integrated Modeling Environment for Detailed Algorithm Design, Simulation and Code Generation

2007-04-16
2007-01-0274
Ford Motor Company has developed an Integrated Modeling Environment (IME) for hybrid electric vehicle (HEV) control system development. This paper presents the Integrated Modeling Environment which facilitates the design and development methodology for the production control algorithms to seamlessly move from simulation to the embedded microcontroller environment. The IME encompasses requirement management, system analysis and verification testing at multiple levels of the Systems Engineering V. In addition, the application of this environment for developing HEV control system (production algorithms and code) is also presented.
Technical Paper

Power Control for the Escape and Mariner Hybrids

2007-04-16
2007-01-0282
Ford Motor Company has developed a full hybrid electric vehicle with a power-split hybrid powertrain. There are constraints imposed by the high voltage system in such an HEV, that do not exist in conventional vehicles. A significant controls problem that was addressed in the Ford Escape and Mercury Mariner Hybrids was the determination of the desired powertrain operating point such that the vehicle attributes of fuel economy, performance and drivability are met, while satisfying these new constraints. This paper describes the control system that addressed this problem and the tests that were designed to verify its operation.
Technical Paper

Utilizing Public Vehicle Travel Survey Data Sets for Vehicle Driving Pattern and Fuel Economy Studies

2017-03-28
2017-01-0232
Realistic vehicle fuel economy studies require real-world vehicle driving behavior data along with various factors affecting the fuel consumption. Such studies require data with various vehicles usages for prolonged periods of time. A project dedicated to collecting such data is an enormous and costly undertaking. Alternatively, we propose to utilize two publicly available vehicle travel survey data sets. One is Puget Sound Travel Survey collected using GPS devices in 484 vehicles between 2004 and 2006. Over 750,000 trips were recorded with a 10-second time resolution. The data were obtained to study travel behavior changes in response to time-and-location-variable road tolling. The other is Atlanta Regional Commission Travel Survey conducted for a comprehensive study of the demographic and travel behavior characteristics of residents within the study area.
X