Refine Your Search




Search Results

Technical Paper

50,000 Mile Vehicle Road Test of Three-Way and NOx Reduction Catalyst Systems

The performance of three way and NOx catalysts was evaluated on vehicles utilizing non-feedback fuel control and electronic feedback fuel control. The vehicles accumulated 80,450 km (50,000 miles) using fuels representing the extremes in hydrogen-carbon ratio available for commercial use. Feedback carburetion compared to non-feedback carburetion improved highway fuel economy by about 0.4 km/l (1 mpg) and reduced deterioration of NOx with mileage accumulation. NOx emissions were higher with the low H/C fuel in the three way catalyst system; feedback reduced the fuel effect on NOx in these cars by improving conversion efficiency with the low H/C fuel. Feedback had no measureable effect on HC and CO catalyst efficiency. Hydrocarbon emissions were lower with the low H/C fuel in all cars. Unleaded gasoline octane improver, MMT, at 0.015g Mn/l (0.06 g/gal) increased tailpipe hydrocarbon emissions by 0.05 g/km (0.08 g/mile).
Technical Paper

A Comparison of Four Methods for Determining the Octane Index and K on a Modern Engine with Upstream, Port or Direct Injection

Combustion in modern spark-ignition (SI) engines is increasingly knock-limited with the wide adoption of downsizing and turbocharging technologies. Fuel autoignition conditions are different in these engines compared to the standard Research Octane Number (RON) and Motor Octane Numbers (MON) tests. The Octane Index, OI = RON - K(RON-MON), has been proposed as a means to characterize the actual fuel anti-knock performance in modern engines. The K-factor, by definition equal to 0 and 1 for the RON and MON tests respectively, is intended to characterize the deviation of modern engine operation from these standard octane tests. Accurate knowledge of K is of central importance to the OI model; however, a single method for determining K has not been well accepted in the literature.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Fuel Vapor Model (FVSMOD) for Evaporative Emissions System Design and Analysis

A fuel vapor system model (FVSMOD) has been developed to simulate vehicle evaporative emission control system behavior. The fuel system components incorporated into the model include the fuel tank and pump, filler cap, liquid supply and return lines, fuel rail, vent valves, vent line, carbon canister and purge line. The system is modeled as a vented system of liquid fuel and vapor in equilibrium, subject to a thermal environment characterized by underhood and underbody temperatures and heat transfer parameters assumed known or determined by calibration with experimental liquid temperature data. The vapor/liquid equilibrium is calculated by simple empirical equations which take into account the weathering of the fuel, while the canister is modeled as a 1-dimensional unsteady absorptive and diffusive bed. Both fuel and canister submodels have been described in previous publications. This paper presents the system equations along with validation against experimental data.
Technical Paper

Adaptive Algorithm for Engine Air – Fuel Ratio Control with Dual Fuel Injection Systems

Dual fuel injection systems, like PFI+DI (port fuel injection + direct injection system) are being increasingly used in gasoline engine applications to increase the engine performance, fuel efficiency and reduce emissions. At a given engine operating condition, the air/fuel error is a function of the fraction of fuel injected by each of the fuel systems. If the fraction of fuel from each of the fuel system is changed at a given operating condition, the fuel system error will change as well making it challenging to learn the fuel system errors. This paper aims at describing the adaptive fueling control algorithm to estimate the fuel error contribution from each individual fuel system. Considering the fuel injection system slope errors to be the significant cause for air-fuel errors, a model structure was developed to calculate the fuel system adaptive correction factor as a function of changing fraction of fueling between the fuel systems.
Technical Paper

Adaptive Temperature Control for Diesel Particulate Filter Regeneration

The regeneration process of a Diesel Particulate Filter (DPF) consists of an increase in the engine exhaust gas temperature by using post injections and/or exhaust fuel injection during a period of time in order to burn previously trapped soot. The DPF regeneration is usually performed during a real drive cycle, with continuously changing driving conditions. The quantity of post injection/exhaust fuel to use for regeneration is calculated using a combination of an open loop term based on engine speed, load and exhaust gas flow and a closed loop term based on an exhaust gas temperature target and the feedback from a number of sensors. Due to the nature of the system and the slow response of the closed loop term for correcting large deviations, the authority of the fuel calculation is strongly biased to the open loop. However, the open loop fuel calculation might not be accurate enough to provide adequate temperature tracking due to several disturbances in the system.
Technical Paper

Advanced Predictive Diesel Combustion Simulation Using Turbulence Model and Stochastic Reactor Model

Today numerical models are a major part of the diesel engine development. They are applied during several stages of the development process to perform extensive parameter studies and to investigate flow and combustion phenomena in detail. The models are divided by complexity and computational costs since one has to decide what the best choice for the task is. 0D models are suitable for problems with large parameter spaces and multiple operating points, e.g. engine map simulation and parameter sweeps. Therefore, it is necessary to incorporate physical models to improve the predictive capability of these models. This work focuses on turbulence and mixing modeling within a 0D direct injection stochastic reactor model. The model is based on a probability density function approach and incorporates submodels for direct fuel injection, vaporization, heat transfer, turbulent mixing and detailed chemistry.
Journal Article

Advancements and Opportunities for On-Board 700 Bar Compressed Hydrogen Tanks in the Progression Towards the Commercialization of Fuel Cell Vehicles

Fuel cell vehicles are entering the automotive market with significant potential benefits to reduce harmful greenhouse emissions, facilitate energy security, and increase vehicle efficiency while providing customer expected driving range and fill times when compared to conventional vehicles. One of the challenges for successful commercialization of fuel cell vehicles is transitioning the on-board fuel system from liquid gasoline to compressed hydrogen gas. Storing high pressurized hydrogen requires a specialized structural pressure vessel, significantly different in function, size, and construction from a gasoline container. In comparison to a gasoline tank at near ambient pressures, OEMs have aligned to a nominal working pressure of 700 bar for hydrogen tanks in order to achieve the customer expected driving range of 300 miles.
Technical Paper

Alternative to Phthalate Plasticizer for PVC/NBR Formulation Used in Automotive Fuel System with Biodiesel

Phthalates have been extensively used in rubbers formulation as plasticizer additive for PVC and NBR promoting processing parameters or for cost reduction. The most commonly used plasticizer in PVC compounds was di-2-ethylhexyl phthalate (DEHP) currently not recommend due toxicity. DEHP is listed as prohibited to the Global Automotive Declarable Substance List (GADSL). Phthalates alternatives are already available but the compatibility in automotive fuel system with biodiesel was not extensively understood. This aspect is important since plasticizer may migrate and change rubber properties. Tri-2-ethylhexyl trimellitate (TOTM) and di-2-ethylhexyl terephthalate (DEHT) were selected in this work as alternative additives to a rubber formulation since is not listed to GADSL and have good potential as plasticizer.
Technical Paper

An Artificial UEGO Sensor for Engine Cold Start - Methodology, Design, and Performance

The AFR control accuracy in the cold start is crucial to lowering emissions from IC-engine vehicles. An artificial UEGO “sensor” for estimating the real-time AFR during the engine cold start has been developed on the basis of a fuel-perturbation algorithm at Ford Scientific Research Labs. The AFR values calculated by the artificial UEGO sensor have been used in the closed-loop fuel control. Considering that the engine cold start AFR is an uncertain, non-linear problem, some other techniques for optimizing the input stimulation signal and the output-filtering model are integrated together with the fuel perturbation. This artificial sensor was realized and its performance was tested on a Ford vehicle for EPA75 cold 505 test. The assessment of the artificial sensor was quite different in comparison with that of a real UEGO sensor.
Technical Paper

Bench Test Method for Fuel Tank Vent Valve Noise Induced by EVAP System Pressure Pulsation

In gasoline Powertrain systems, the evaporative emission control (EVAP) system canister purge valve (CPV) can be actuated by pulse-width modulated (PWM) signals. The CPV is an electronically actuated solenoid. The PWM controlled CPV, when actuated, creates pressure pulsations in the system. This pulsation is sent back to the rest of the EVAP system. Given the right conditions, the fill limit vent valve (FLVV) inside the fuel tank can be excited. The FLVV internal components can be excited and produce noise. This noise can be objectionable to the occupants. Additional components within the EVAP system may also be excited in a similar way. This paper presents a bench test method using parts from vehicle’s EVAP system and other key fuel system components.
Journal Article

CFD Driven Parametric Design of Air-Air Jet Pump for Automotive Carbon Canister Purging

A jet pump (also known as ejector) uses momentum of a high velocity jet (primary flow) as a driving mechanism. The jet is created by a nozzle that converts the pressure head of the primary flow to velocity head. The high velocity primary flow exiting the nozzle creates low pressure zone that entrains fluid from a secondary inlet and transfers the total flow to desired location. For a given pressure of primary inlet flow, it is desired to entrain maximum flow from secondary inlet. Jet pumps have been used in automobiles for a variety of applications such as: filling the Fuel Delivery Module (FDM) with liquid fuel from the fuel tank, transferring liquid fuel between two halves of the saddle type fuel tank and entraining fresh coolant in the cooling circuit. Recently, jet pumps have been introduced in evaporative emission control system for turbocharged engines to remove gaseous hydrocarbons stored in carbon canister and supply it to engine intake manifold (canister purging).
Journal Article

Characterization of Powertrain Technology Benefits Using Normalized Engine and Vehicle Fuel Consumption Data

Vehicle certification data are used to study the effectiveness of the major powertrain technologies used by car manufacturers to reduce fuel consumption. Methods for differentiating vehicles effectively were developed by leveraging theoretical models of engine and vehicle fuel consumption. One approach normalizes by displacement per unit distance, which puts both fuel used and vehicle work in mean effective pressure units, and is useful when comparing engine technologies. The other normalizes by engine rated power, a customer-relevant output metric. The normalized work/power is proportional to weight/power, the most fundamental performance metric. Certification data for 2016 and 2017 U.S. vehicles with different powertrain technologies are compared to baseline vehicles with port fuel injection (PFI) naturally aspirated engines and six-speed automatic transmissions.
Technical Paper

Co-fueling of Urea for Diesel Cars and Trucks

Urea SCR is an established method to reduce NOx in dilute exhaust gas. The method is being used currently with stationary powerplants, and successful trials on motor vehicles have been conducted. The reason most often cited for rejecting urea SCR is lack of urea supply infrastructure, yet urea and other high nitrogen products are traded as commodities on the world market as a fertilizer grade, and an industrial grade is emerging. For a subset of commercial vehicles, urea can be provided by service personnel at designated terminals. But this approach does not support long distance carriers and personal use vehicles. The preferred delivery method is to add urea during vehicle refueling through a common fuel nozzle and fill pipe interface: urea / diesel co-fueling. Aqueous urea is well suited to delivery in this fashion.
Technical Paper

Customer Data Driven PHEV Refuel Distance Modeling and Estimation

Plug-in hybrid electric vehicles (PHEV) have an EV mode driving range which can cover a portion of customer daily driving. This EV mode range affects the refuel frequency substantially compared with conventional vehicle. For a conventional vehicle, daily driving pattern, tank size and fuel economy are the factors affecting the refuel frequency. While for a PHEV, EV range is another factor would affect the results substantially. Traditional method of label range can’t represent real world driving range between fill-ups for PHEV well. How to accurately predict the PHEV refuel distance taking into account real world customer driving patterns and PHEV parameters become critical for PHEV system design and optimization. This paper presents real world big customer data based PHEV refuel distance estimation modeling. The target is to estimate PHEV refuel distance given several specific parameters such as EV range, hybrid mode fuel economy, tank size etc.
Technical Paper

DISI Spray Modeling Using Local Mesh Refinement

The accurate prediction of fuel sprays is critical to engine combustion and emissions simulations. A fine computational mesh is often required to better resolve fuel spray dynamics and vaporization. However, computations with a fine mesh require extensive computer time. This study developed a methodology that uses a locally refined mesh in the spray region. Such adaptive mesh refinement will enable greater resolution of the liquid-gas interaction while incurring only a small increase in the total number of computational cells. The present study uses an h-refinement adaptive method. A face-based approach is used for the inter-level boundary conditions. The prolongation and restriction procedure preserves conservation of properties in performing grid refinement/coarsening. The refinement criterion is based on the mass of spray liquid and fuel vapor in each cell. The efficiency and accuracy of the present adaptive mesh refinement scheme is demonstrated.
Technical Paper

Demisting of Vehicle Air Intake Using Plane Baffles

The penetration of rainwater through the heating ventilation and air conditioning system, HVAC, of a vehicle directly affects the provision of thermal comfort within the vehicle passenger compartment. The first element of a typical HVAC system, namely the cowl box is considered. The purpose of the airway from the cowl grille openings to the air filter, immediately before the blower, is to ensure proper water separation from the incoming air stream before entry onto the air filter and onwards into the rest of the HVAC system. This is achieved by ensuring standing water within the cowl is quickly drained and that water rain droplets or water flows from the windshield and body are separated from the air stream, hence minimising the effect on the total system volumetric flow rate. An experimental study is conducted to examine the effect of plane baffles on the airflow filed within a rectangular duct. A set of plane baffle plates is placed within the cowl duct.
Journal Article

Development and Optimization of the Ford 3.5L V6 EcoBoost Combustion System

Recently, Ford Motor Company announced the introduction of EcoBoost engines in its Ford, Lincoln and Mercury vehicles as an affordable fuel-saving option to millions of its customers. The EcoBoost engine is planned to start production in June of 2009 in the Lincoln MKS. The EcoBoost engine integrates direct fuel injection with turbocharging to significantly improve fuel economy via engine downsizing. An application of this technology bundle into a 3.5L V6 engine delivers up to 12% better drive cycle fuel economy and 15% lower emissions with comparable torque and power as a 5.4L V8 PFI engine. Combustion system performance is key to the success of the EcoBoost engine. A systematic methodology has been employed to develop the EcoBoost engine combustion system.
Technical Paper

Development of Fluid-Structure Interaction CAE Method to Assess Effect of Fuel Slosh on Fuel Level Sensor

Fuel level sensors are used to indicate the amount of fuel in the tank of an automobile. The most common type of fuel level sensor is the float-arm sensor in which a float is connected to a resistance band via an arm. The fuel volume inside the tank sets the height of the float which in turn is converted to a resistance value. This resistance value is converted into gauge reading that is displayed on the dashboard. Whereas this method is widely popular due to its low cost and durability, fuel slosh phenomenon imposes a major challenge. The fuel slosh waves under numerous driving maneuvers impose dynamic drag/lift forces on the float which result into fluctuations in its position (i.e. float height). Under severe acceleration or braking maneuvers, the float can actually submerge inside the liquid and fail to predict location of the free surface. These fluctuations can cause erroneous fuel indication.
Technical Paper

Direct Injection Design Principles for Noise Vibration Harshness

1 Engine ticking noise is one of the key failure modes in today’s direct injection (DI) engines. High ticking noise results in high Things Gone Wrong (TGW) index, which negatively affects customer satisfaction. In this paper, the root cause of the ticking noise from DI injector in direct mounting will be presented. Design principle such as injector impact force to cylinder head and DI injector isolator design with 2 stage stiffness is proposed.