Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Cross-Section Optimization for Axial and Bending Crushes Using Dual Phase Steels

2008-04-14
2008-01-1125
To achieve optimal axial and bending crush performance using dual phase steels for components designed for crash energy absorption and/or intrusion resistance applications, the cross sections of the components need to be optimized. In this study, Altair HyperMorph™ and HyperStudy® optimization software were used in defining the shape design variables and the optimization problem setup, and non-linear finite element code LS-DYNA® software was used in crush simulations. Correlated crash simulation models were utilized and the square cross-section was selected as the baseline. The optimized cross-sections for bending and axial crush performance resulted in significant mass and cost savings, particularly with the application of dual phase steels.
Technical Paper

Effect of Trigger Variation on Frontal Rail Crash Performance

2005-04-11
2005-01-0358
The frontal rail is one of the most important components of a vehicle in determining crash performance, especially for a body on frame vehicle. Prior research [1] has shown that the frontal rail absorbs a significant amount of impact energy in a crash condition. In order to optimize crash performance, a component level sensitivity study was conducted to determine the effect different types of triggers would have on the performance of the frontal rail. The objective of this study is to determine the sensitivity of trigger size, trigger shape, and trigger orientation as well as to improve corresponding trigger modeling methodology by comparing crushed components to crushed CAE models. In this sensitivity study, the location of the triggers was held fixed, while the size, shape, and orientation were varied. The metric that will be used to compare the performance of these different trigger shapes is the overall stiffness of the frontal rail.
Technical Paper

Structural Optimization for Vehicle Pitch and Drop

2006-04-03
2006-01-0316
The optimization method and CAE analysis have been widely used in structure design for crash safety. Combining the CAE analysis and optimization approach, vehicle structure design for crash can be implemented more efficiently. One of the recent safety desirables in structure design is to reduce vehicle pitch and drop. At frontal impact tests with unbelted occupants, the interaction between occupant's head and interior header/sun visor, which is caused by excessive vehicle pitch and drop, is not desired in vehicle crash development. In order to comply with the federal frontal crash requirements for unbelted occupant, it is necessary to manage the vehicle pitch and drop by improving structure design. In this paper, a systematic process of CAE analysis with optimization approach is applied for discovering the major structural components affecting vehicle pitch and drop.
X