Refine Your Search

Topic

Author

Search Results

Technical Paper

A Modified Oil Lubrication System with Flow Control to Reduce Crankshaft Bearing Friction in a Litre 4 Cylinder Diesel Engine

2016-04-05
2016-01-1045
The oil distribution system of an automotive light duty engine typically has an oil pump mechanically driven through the front-endancillaries-drive or directly off the crankshaft. Delivery pressure is regulated by a relief valve to provide an oil gallery pressure of typically 3 to 4 bar absolute at fully-warm engine running conditions. Electrification of the oil pump drive is one way to decouple pump delivery from engine speed, but this does not alter the flow distribution between parts of the engine requiring lubrication. Here, the behaviour and benefits of a system with an electrically driven, fixed displacement pump and a distributor providing control over flow to crankshaft main bearings and big end bearings is examined. The aim has been to demonstrate that by controlling flow to these bearings, without changing flow to other parts of the engine, significant reductions in engine friction can be achieved.
Technical Paper

Advanced Lubrication - Enabling and Protecting Turbocharged, Direct Injection Gasoline Engines for Optimum Efficiency

2016-10-17
2016-01-2275
There has been a global technology convergence by engine manufacturers as they strive to meet or exceed the ever-increasing fuel economy mandates that are intended to mitigate the trend in global warming associated with CO2 emissions. While turbocharging and direct-injection gasoline technologies are not new, when combined they create the opportunity for substantial increase in power output at lower engine speeds. Higher output at lower engine speeds is inherently more efficient, and this leads engine designers in the direction of overall smaller engines. Lubricants optimized for older engines may not have the expected level of durability with more operating time being spent at higher specific output levels. Additionally, a phenomenon that is called low-speed pre-ignition has become more prevalent with these engines.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Automatic Transmission and Driveline Fluids*

2007-10-29
2007-01-3988
This paper provides an overview of driveline fluids, in particular automatic transmission fluids (ATFs), and is intended to be a general reference for those working with such fluids. Included are an introduction to driveline fluids, highlighting what sets them apart from other lubricants, a history of ATF development, a description of key physical ATF properties and a comparison of ATF fluid specifications. Also included are descriptions of the chemical composition of such fluids and the commonly used basestocks. A section is included on how to evaluate used driveline oils, describing common test methods and some comments on interpreting the test results. Finally the future direction of driveline fluid development is discussed. A glossary of terms is included at the end.
Technical Paper

Biodiesel Fuel Effect on Diesel Engine Lubrication

2008-10-06
2008-01-2375
Biodiesel fuel is a promising new renewable, alternate fuel source. However, its effect on diesel engine oil lubrication is largely untested at present. There is some indication that the use of biodiesel fuel can degrade diesel engine oil performance to such an extent that shortening of oil drain intervals is required. Oil which is fuel-diluted with biodiesel, which is known to contain unsaturated hydrocarbon bonds, would be expected to be more prone to oxidation. Current diesel engines designed to meet environmental standards tend to introduce more soot into the crankcase oil. The new diesel engine oils for use with biodiesel fuel must be capable of dispersing soot to minimize soot-induced viscosity increase of the oil and prevent engine wear. Oils will also need improved oxidation and corrosion inhibition. To examine soot-handling, ASTM D 7156 Mack T-11 engine test results with 20 wt% soy methyl ester in ultra-low sulfur diesel fuel (B20) were employed.
Technical Paper

Characterising Lubricating Oil Viscosity to Describe Effects on Engine Friction

2007-07-23
2007-01-1984
Oil formulation has been varied to modify oil viscosity characteristics; the effect on the rubbing friction losses of a 2.4litre diesel engine has been investigated for a range of temperatures from -20 to around 60°C. The aims of the study were first, to examine the extent to which viscosity alone determined the effect of formulation changes, and second, to define an effective viscosity to relate changes in viscosity due to formulation and temperature to changes in engine friction. This effective viscosity is based on cold cranking simulator measurements at -30°C, high temperature high shear viscosity at 150°C and kinematic viscosity measurements at three intermediate temperatures to define the variation with temperature. The effective viscosity has been described using a modified Vogel equation, which is presented.
Technical Paper

Characterization of TEOST Deposits and Comparison to Deposits Formed on Sequence IIIG Pistons

2009-11-02
2009-01-2663
In the next ILSAC passenger car motor oil specification the Sequence IIIG engine test, as well as two versions of the Thermo-Oxidation Engine Oil Simulation Test (TEOST) have been proposed as tests to determine the ability of crankcase oils to control engine deposits. The Sequence IIIG engine test and the TEOST MHT test are designed to assess the ability of lubricants to control piston deposits and the TEOST 33 test is designed to assess the ability of lubricants to control turbocharger deposits. We have previously characterized the chemical composition of Sequence IIIG piston deposits using thermogravimetric, infrared and SEM/EDS analyses. Sequence IIIG piston deposits contain a significant amount of carbonaceous material and the carbonaceous material is more prevalent on sections of the pistons that should encounter higher temperatures. Furthermore, the carbonaceous material appears to be a deposit formed by the Sequence IIIG fuel.
Journal Article

Development and Testing of an Innovative Oil Condition Sensor

2009-04-20
2009-01-1466
In order to detect degradation of engine oil lubricant, bench testing along with a number of diesel-powered Ford trucks were instruments and tested. The purpose of the bench testing was primarily to determine performance aspects such as repeatability, hysteresis effects and so on. Vehicle testing was conducted by designing and installing a separate oil reservoir along with a circulation system which was mounted in the vicinity of the oil pan. An innovative oil sensor was directly installed on the reservoir which can measure five (5) independent oil parameters (viscosity, density, permittivity, conductance, temperature). In addition, the concept is capable of detecting the oil level continuously during normal engine operation. The sensing system consists of an ultrasonic transducer for the oil level detection as well as a Tuning Fork mechanical resonator for the oil condition measurement.
Journal Article

Effect of Biodiesel (B20) on Vehicle-Aged Engine Oil Properties

2010-10-25
2010-01-2103
High concentrations of diesel fuel can accumulate in the engine oil, especially in vehicles equipped with diesel particle filters. Fuel dilution can decrease the viscosity of engine oil, reducing its film thickness. Higher concentrations of fuel are believed to accumulate in oil with biodiesel than with diesel fuel because biodiesel has a higher boiling temperature range, allowing it to persist in the sump. Numerous countries are taking actions to promote the use of biodiesel. The growing interest for biodiesel has been driven by a desire for energy independence (domestically produced), the increasing cost of petroleum-derived fuels, and an interest in reducing greenhouse gas emissions. Biodiesel can affect engine lubrication (through fuel dilution), as its physical and chemical properties are significantly different from those of petrodiesel. Many risks associated with excessive biodiesel dilution have been identified, yet its actual impact has not been well quantified.
Technical Paper

Effect of Fluid Flow through Clutch Material on Torque Fluctuations in Clutches

2016-10-17
2016-01-2343
Improving vehicle fuel efficiency is a key market driver in the automotive industry. Typically lubricant chemists focus on reducing viscosity and friction to reduce parasitic energy losses in order to improve automotive fuel efficiency. However, in a transmission other factors may be more important. If an engine can operate at high torque levels the conversion of chemical energy in the fuel to mechanical energy is dramatically increased. However high torque levels in transmissions may cause NVH to occur. The proper combination of friction material and fluid can be used to address this issue. Friction in clutches is controlled by asperity friction and hydrodynamic friction. Asperity friction can be controlled with friction modifiers in the ATF. Hydrodynamic friction control is more complex because it involves the flow characteristics of friction materials and complex viscosity properties of the fluid.
Journal Article

Effect of Lubricant Oil Properties on the Performance of Gasoline Particulate Filter (GPF)

2016-10-17
2016-01-2287
Mobile source emissions standards are becoming more stringent and particulate emissions from gasoline direct injection (GDI) engines represent a particular challenge. Gasoline particulate filter (GPF) is deemed as one possible technical solution for particulate emissions reduction. In this work, a study was conducted on eight formulations of lubricants to determine their effect on GDI engine particulate emissions and GPF performance. Accelerated ash loading tests were conducted on a 2.4L GDI engine with engine oil injection in gasoline fuel by 2%. The matrix of eight formulations was designed with changing levels of sulfated ash (SASH) level, Zinc dialkyldithiophosphates (ZDDP) level and detergent type. Comprehensive evaluations of particulates included mass, number, size distribution, composition, morphology and soot oxidation properties. GPF performance was assessed through filtration efficiency, back pressure and morphology.
Journal Article

Effects of Oil Formulation, Oil Separator, and Engine Speed and Load on the Particle Size, Chemistry, and Morphology of Diesel Crankcase Aerosols

2016-04-05
2016-01-0897
The recirculation of gases from the crankcase and valvetrain can potentially lead to the entrainment of lubricant in the form of aerosols or mists. As boost pressures increase, the blow-by flow through both the crankcase and the valve cover increases. The resulting lubricant can then become part of the intake charge, potentially leading to fouling of intake components such as the intercooler and the turbocharger. The entrained aerosol which can contain the lubricant and soot may or may not have the same composition as the bulk lubricant. The complex aerodynamic processes that lead to entrainment can strip out heavy components or volatilize light components. Similarly, the physical size and numbers of aerosol particles can be dependent upon the lubricant formulation and engine speed and load. For instance, high rpm and load may increase not only the flow of gases but the amount of lubricant aerosol.
Technical Paper

Effects of Surface Treatment (Lubricant) on Spot Friction Welded Joints Made of 6111-T4 Aluminum Sheets

2007-04-16
2007-01-1706
The effects of lubricant on lap shear strength of Spot Friction Welded (SFW) joints made of 6111-T4 alloys were studied. Taguchi L8 design of experiment methodology was used to determine the lubricant effects. The results showed that the lap shear strength increased by 9.9% when the lubricant was present at the top surface compared to that of the baseline (no lubricant) whereas the lap shear strength reduced by 10.2% and 10.9% when the lubricant was present in the middle and at the bottom surfaces compared to that of the baseline (no lubricant), respectively. The microstructure analysis showed a zigzag interface at the joint between the upper and the lower sheet metal for the baseline specimen, the specimens with the lubricant at the top and at the bottom. However, a straight line interface is exhibited at the joint between the upper and the lower sheet for the specimen with the lubricant in the middle. The weld nugget sizes of the lap shear tested specimens were measured.
Technical Paper

Engine Friction and Wear Performances with Polyalkylene Glycol Engine Oils

2016-10-17
2016-01-2271
The application of polyalkylene glycol (PAG) as a base stock for engine oil formulation has been explored for substantial fuel economy gain over traditional formulations with mineral oils. Various PAG chemistries were explored depending on feed stock material used for manufacturing. All formulations except one have the same additive package. The friction performance of these oils was evaluated in a motored single cylinder engine with current production engine hardware in the temperature range 40°C-120°C and in the speed range of 500 RPM-2500 RPM. PAG formulations showed up to 50% friction reduction over GF-5 SAE 5W-20 oil depending on temperature, speed, and oil chemistry. Friction evaluation in a motored I-4 engine showed up to 11% friction reduction in the temperature range 40°C-100°C over GF-5 oil. The paper will share results on ASTM Sequence VID fuel economy, Sequence IVA wear, and Sequence VG sludge and varnish tests. Chassis roll fuel economy data will also be shared.
Journal Article

Engine Oil Additive Impacts on Low Speed Pre-Ignition

2016-10-17
2016-01-2277
Low speed pre-ignition (LSPI) is an undesirable combustion phenomenon that limits the fuel economy, drivability, emissions and durability performance of modern turbocharged engines. Because of the potential to catastrophically damage an engine after only a single pre-ignition event, the ability to reduce LSPI frequency has grown in importance over the last several years. This is evident in the significant increase in industry publications. It became apparent that certain engine oil components impact the frequency of LSPI events when evaluated in engine tests, notably calcium detergent, molybdenum and phosphorus. However, a close examination of the impact of other formulation additives is lacking. A systematic evaluation of the impact of the detergent package, including single-metal and bimetal detergent systems, ashless and ash-containing additives has been undertaken using a GM 2.0L Ecotec engine installed on a conventional engine dynamometer test stand.
Journal Article

Engine Oil Fuel Economy: Benefits and Potential Debits of Low Viscosity Engine Oil

2019-12-19
2019-01-2241
There has been a trend in the automotive industry toward the use of lower viscosity engine oils as fuel economy requirements become more demanding across the globe. Lower viscosity fluids may improve fuel economy due to their improved pumpability, lower churning losses, and thinner lubricating films. However, there is one important caveat related to the use of these fluids: the amount of improvement, if any, is hardware design and application dependent. Standard industry fuel economy tests and engines with differing designs may show divergent responses when using lower viscosity engine oils, not always showing an improved fuel economy response. This paper summarizes the work conducted by the authors to demonstrate how and why the inconsistent results in fuel economy can occur with low viscosity oils.
Technical Paper

Extensional Rheology: New Dimension of Characterizing Automotive Fluids

2017-03-28
2017-01-0364
This paper describes the basic principles of extensional rheometry, and the successful application to a variety of automotive fluids, including gear lubricants, paints, and forming lubricants. These fluids are used under very complex flow fields containing strong extensional (elongational) components. While exact derivation of extensional viscosities involves sophisticated theories, the measurement of liquid filament break-up time can provide fruitful information. Gear lubes showed different break-up time according to the kinematic viscosities. Addition of viscosity modifier (acrylic copolymer) significantly increased the breakup time, whereas surfactants had little effect. Clearcoat paint sample increased the breakup time, perhaps due to the deterioration. The waxy stamping lubricant showed remarkable change in the extensional properties as the temperature is raised.
Technical Paper

Flash Temperature in Clutches

2005-10-24
2005-01-3890
Sliding contact between friction surfaces occurs in numerous torque transfer elements: torque converter clutches, shifting clutches, launch or starting clutches, limited slip differential clutches, and in the meshing of gear teeth under load. The total temperature in a friction interface is the sum of the equilibrium temperature with no sliding and a transient temperature rise, the flash temperature, caused by the work done while sliding. In a wet shifting clutch the equilibrium temperature is typically the bulk oil temperature and the flash temperature is the temperature rise during clutch engagement. The flash temperature is an important factor in the performance and durability of a clutch since it affects such things as the reactivity of the sliding surfaces and lubricant constituents (e.g., oxidation) and thermal stress in the components. Knowing how high the flash temperature becomes is valuable for the formulation of ATF, gear oil, engine oil and other lubricants.
Technical Paper

Formation of Deposits from Lubricants in High Temperature Applications

2008-06-23
2008-01-1617
Deposit formation is an issue of great significance in a broad range of applications where lubricants are exposed to high temperatures. Lube varnish causes valve-sticking, bearing failure and filter blockage which can lead to considerable equipment downtime and high maintenance costs. Recently this has become a pressing issue in the stationary power generation industry. In order to investigate the chemistry leading to varnish, three samples of varnish-coated components from the lube/hydraulic systems of gas turbines from the field were obtained, along with information on the commercially available formulated oils which were used. Samples of these three fresh oils were analysed by a variety of chromatographic and spectroscopic techniques, which confirmed chemical identity of aminic and/or phenolic antioxidants, corrosion inhibitors and antiwear components. The varnish-coated turbine components were also investigated by these methods.
Technical Paper

Fuel Economy Improvement Through Frictional Loss Reduction in Light Duty Truck Rear Axle

2002-10-21
2002-01-2821
In an effort to improve fuel economy for light duty trucks, an initiative was undertaken to reduce frictional losses in rear axle through use of low friction lubricants and novel surface finish on gears while maintaining durability. This paper describes the effect of rear axle lubricants on fuel economy. A laboratory rig was set up using a full size pick-up truck rear axle to measure axle efficiency and lubricant temperature with various SAE 75W-90 and SAE 75W-140 viscosity grade lubricants. Traction coefficients of lubricants were also measured at various temperatures using a laboratory ball and disk contact geometry. An improvement in axle efficiency up to 4.3% was observed over current Ford factory fill SAE 75W-140 lubricant depending on speed, torque and the type of lubricant used. The temperature of the lubricants was also lower than that with the current factory fill. This is important for maintaining bearing life and overall durability of the rear axle.
X