Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1D Model for Correcting the Rate of Injection Signal Based on Geometry and Temperature Influence

2017-03-28
2017-01-0819
The fuel consumption and emissions of diesel engines is strongly influenced by the injection rate pattern, which influences the in-cylinder mixing and combustion process. Knowing the exact injection rate is mandatory for an optimal diesel combustion development. The short injection time of no more than some milliseconds prevents a direct flow rate measurement. However, the injection rate is deduced from the pressure change caused by injecting into a fuel reservoir or pipe. In an ideal case, the pressure increase in a fuel pipe correlates with the flow rate. Unfortunately, real measurement devices show measurement inaccuracies and errors, caused by non-ideal geometrical shapes as well as variable fuel temperature and fuel properties along the measurement pipe. To analyze the thermal effect onto the measurement results, an available rate measurement device is extended with a flexible heating system as well as multiple pressure and temperature sensors.
Technical Paper

3D CFD Upfront Optimization of the In-Cylinder Flow of the 3.5L V6 EcoBoost Engine

2009-04-20
2009-01-1492
This paper presents part of the analytical work performed for the development and optimization of the 3.5L EcoBoost combustion system from Ford Motor Company. The 3.5L EcoBoost combustion system is a direct injected twin turbocharged combustion system employing side-mounted multi-hole injectors. Upfront 3D CFD, employing a Ford proprietary KIVA-based code, was extensively used in the combustion system development and optimization phases. This paper presents the effect of intake port design with various levels of tumble motion on the combustion system characteristics. A high tumble intake port design enforces a well-organized stable motion that results in higher turbulence intensity in the cylinder that in turn leads to faster burn rates, a more stable combustion and less fuel enrichment requirement at full load.
Technical Paper

6×4 Commercial Trucks Load Sense Valve Installation

2007-11-28
2007-01-2919
With the intent of attend the Annex 10 performance specifications of the Economic Commission for Europe (ECE-R13), translated on NBR 14354/1999, it was necessary to develop a load sense valve installation layout also to the 6×4 vehicles. This work shows the steps for the development of the load sense valve installation and calibration on 6×4 vehicles, considering the valve performance on the two traction axles and preventing brake locking under low friction track conditions, under empty conditions use or with low load. The design required a detailed layout in order to develop a load sense valve attachment system considering the movement of both traction axles, as well as respecting the vehicle initial project physical limits; adjusting it to one of the available valve cams in the market; intending to develop a durable design and at the same time of low variable cost, with low tooling costs and that does not add much complexity to the production line.
Technical Paper

A CAE Optimization Process for Vehicle High Frequency NVH Applications

2005-05-16
2005-01-2422
A CAE SEA-based optimization process for the enhancement of vehicle high frequency NVH applications is developed and validated. The CAE simulation, based on statistical energy analysis (SEA) theory [1], has been used to analyze high frequency NVH responses for the vehicle sound package development. However, engineers have always faced two challenges during the vehicle SEA model development. One is to create a reliable SEA model, which is correlated well with hardware test data. The other is to have a systematic approach by using the correlated model to design effective and cost efficient sound package to improve vehicle interior quietness. The optimization process presented in this paper, which integrates analysis, design sensitivity, and optimization solver, has been developed to address the challenges and to serve the needs. A non-correlated Sport Utility Vehicle (SUV) and a correlated midsize car models were used to demonstrate the capability of the proposed optimization process.
Technical Paper

A CFD Validation Study for Automotive Aerodynamics

2000-03-06
2000-01-0129
A study was conducted using Ford's nine standard CFD calibration models as described in SAE paper 940323. The models are identical from the B-pillar forward but have different back end configurations. These models were created for the purpose of evaluating the effect of back end geometry variations on aerodynamic lift and drag. Detailed experimental data is available for each model in the form of surface pressure data, surface flow visualization, and wake flow field measurements in addition to aerodynamic lift and drag values. This data is extremely useful in analyzing the accuracy of the numerical simulations. The objective of this study was to determine the capability of a digital physics based commercial CFD code, PowerFLOW ® to accurately simulate the physics of the flow field around the car-like benchmark shapes.
Journal Article

A Calibration Optimizer Tool for Torque Estimation of K0 Clutch in Hybrid Automatic Transmissions

2017-03-28
2017-01-0603
Software development for automotive application requires several iterations in order to tune parameters and strategy logic to operate accordantly with optimal performance. Thus, in this paper we present an optimizer method and tool used to tune calibration parameters related to torque estimation for a hybrid automatic transmission application. This optimizer aims to minimize the time invested during the software calibration and software development phases that could take significant time in order to cover the different driving conditions under which a hybrid automatic transmission can operate. For this reason, an optimization function based on the Nelder-Mead simplex algorithm using Matlab software helps to find optimized calibration values based on a cost function (square sum error minimization).
Journal Article

A Comparative Study of Two ASTM Shear Test Standards for Chopped Carbon Fiber SMC

2018-04-03
2018-01-0098
Chopped carbon fiber sheet molding compound (SMC) material is a promising material for mass-production lightweight vehicle components. However, the experimental characterization of SMC material property is a challenging task and needs to be further investigated. There now exist two ASTM standards (ASTM D7078/D7078M and ASTM D5379/D5379M) for characterizing the shear properties of composite materials. However, it is still not clear which standard is more suitable for SMC material characterization. In this work, a comparative study is conducted by performing two independent Digital Image Correlation (DIC) shear tests following the two standards, respectively. The results show that ASTM D5379/D5379M is not appropriate for testing SMC materials. Moreover, the failure mode of these samples indicates that the failure is caused by the additional moment raised by the improper design of the fixture.
Technical Paper

A Comparison of DES Methods for the DrivAer Generic Realistic Car Model on a Wall Resolved and a Wall Function Mesh

2022-03-29
2022-01-0900
The DrivAer realistic generic car model is now established as one of the benchmark geometries to assess the aerodynamic flow field characteristics associated with passenger vehicles. Since its introduction in 2012, the database of experimental studies has grown and provides excellent validation opportunities for analytical methods. This paper compares Computational Fluid Dynamics (CFD) simulations for integral forces, surface pressure distribution and velocity flow fields for the DrivAer model in the notchback configuration. Transient CFD data are obtained by employing hybrid Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation methods (Detached Eddy Simulation - DES) using the finite volume solvers Simcenter Star-CCM+ and the openFOAM based flow solver IconCFD. Computational results are calculated using Wall Resolved Meshes (WRM), where y+ < 1, and Wall Function Meshes (WFM), where 30 < y+ < 100.
Technical Paper

A Comparison of Four Methods for Determining the Octane Index and K on a Modern Engine with Upstream, Port or Direct Injection

2017-03-28
2017-01-0666
Combustion in modern spark-ignition (SI) engines is increasingly knock-limited with the wide adoption of downsizing and turbocharging technologies. Fuel autoignition conditions are different in these engines compared to the standard Research Octane Number (RON) and Motor Octane Numbers (MON) tests. The Octane Index, OI = RON - K(RON-MON), has been proposed as a means to characterize the actual fuel anti-knock performance in modern engines. The K-factor, by definition equal to 0 and 1 for the RON and MON tests respectively, is intended to characterize the deviation of modern engine operation from these standard octane tests. Accurate knowledge of K is of central importance to the OI model; however, a single method for determining K has not been well accepted in the literature.
Technical Paper

A Comprehensive Study of Door Slam

2004-03-08
2004-01-0161
As part of an ongoing technical collaboration between Ford and Rouge Steel Company, a comprehensive study of door slam event was undertaken. The experimental phase of the project involved measurements of accelerations at eight locations on the outer panel and strains on six locations of the inner panel. Although slam tests were conducted with window up and window down, results of only one test is presented in this paper. The CAE phase of the project involved the development of suitable “math” model of the door assembly and analysis methodology to capture the dynamics of the event. The predictability of the CAE method is examined through detailed comparison of accelerations and strains. While excellent agreement between CAE and test results of accelerations on the outer panel is obtained, the analysis predicts higher strains on the inner panel than the test. In addition, the tendency of outer panel to elastically buckle is examined.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Cost-Effective Offline Routing Optimization Approach to Employee Shuttle Services

2017-03-28
2017-01-0240
Ride Hailing service and Dynamic Shuttle are two key smart mobility practices, which provide on-demand door-to-door ride-sharing service to customers through smart phone apps. On the other hand, some big companies spend millions of dollars annually in third party vendors to offer shuttle services to pick up and drop off employees at fixed locations and provide them daily commutes for employees to and from work. Efficient fixed routing algorithms and analytics are the key ingredients for operating efficiency behind these services. They can significantly reduce operating costs by shortening bus routes and reducing bus numbers, while maintaining the same quality of service. This study developed an off-line optimization routing method for employee shuttle services including regular work shifts and demand based shifts (e.g. overtime shifts) in some regions.
Technical Paper

A Data Mining and Optimization Process with Shape and Size Design Variables Consideration for Vehicle Application

2018-04-03
2018-01-0584
This paper presents a design process with data mining technique and advanced optimization strategy. The proposed design method provides insights in three aspects. First, data mining technique is employed for analysis to identify key factors of design variables. Second, relationship between multiple types of size and shape design variables and performance responses can be analyzed. Last but not least, design preference can be initialized based on data analysis to provide priori guidance for the starting design points of optimization algorithm. An exhaust system design problem which largely contributes to the improvement of vehicular Noise, Vibration and Harshness (NVH) performance is employed for the illustration of the process. Two types of design parameters, structural variable (gauge of component) and layout variable (hanger location), are considered in the studied case.
Technical Paper

A Design Concept for an Aluminum Sport Utility Vehicle Frame

2003-03-03
2003-01-0572
As part of the joint government/industry Partnership for a New Generation Vehicle (PNGV), Ford Motor Company, with the support of Alcan Aluminum Corporation and The Budd Company, conducted a feasibility study of the design and high volume manufacturing of a lightweight aluminum sport utility vehicle frame. The specific objective of the study was to assess the capability of an aluminum frame to achieve equivalent performance to the 2002 Ford Explorer frame, but at a 40% weight reduction. Using Finite Element Analysis (FEA), it was determined that if a design was constrained to the same section size as the production steel frame, the maximum weight savings that can be realized by use of aluminum is approximately 20%.
Technical Paper

A Finite Element Method for Camshaft Cap Durability Analysis

2017-03-28
2017-01-0341
In this study, a finite element analysis method is developed for simulating a camshaft cap punching bench test. Stiffness results of simulated camshaft cap component are correlated with test data and used to validate the model accuracy in terms of material and boundary conditions. Next, the method is used for verification of cap design and durability performance improvement. In order to improve the computational efficiency of the finite element analysis, the punch is replaced by equivalent trigonometric distributed loads. The sensitivity of the finite element predicted strains for different trigonometric pressure distribution functions is also investigated and compared to strain gage measured values. A number of equivalent stress criteria are also used for fatigue safety factor calculations.
Technical Paper

A Finite Element and Experimental Analysis of a Light Truck Leaf Spring System Subjected to Pre-Tension and Twist Loads

2005-11-01
2005-01-3568
In this study the finite element method is used to simulate a light truck multi-leaf spring system and its interaction with a driven axle, u-bolts, and interface brackets. In the first part of the study, a detailed 3-D FE model is statically loaded by fastener pre-tension to determine stress, strain, and contact pressure. The FE results are then compared and correlated to both strain gage and interface pressure measurements from vehicle hardware test. Irregular contact conditions between the axle seat and leaf spring are investigated using a design of experiments (DOE) approach for both convex and discrete step geometries. In the second part of the study, the system FE model is loaded by both fastener pre-tension and external wheel end loads in order to obtain the twist motion response. Torsional deflection, slip onset, and subsequent slip motion at the critical contact plane are calculated as a function of external load over a range of Coulomb friction coefficients.
Technical Paper

A General Failure Criterion for Spot Welds with Consideration of Plastic Anisotropy and Separation Speed

2003-03-03
2003-01-0611
A general failure criterion for spot welds is proposed with consideration of the plastic anisotropy and the separation speed for crash applications. A lower bound limit load analysis is conducted to account for the failure loads of spot welds under combinations of three forces and three moments. Based on the limit load solution and the experimental results, an engineering failure criterion is proposed with correction factors determined by different spot weld tests. The engineering failure criterion can be used to characterize the failure loads of spot welds with consideration of the effects of the plastic anisotropy, separation speed, sheet thickness, nugget radius and combinations of loads. Spot weld failure loads under uniaxial and biaxial opening loads and those under combined shear and twisting loads from experiments are shown to be characterized well by the engineering failure criterion.
Technical Paper

A Matrix Array Technique for Evaluation of Adhesively Bonded Joints

2012-04-16
2012-01-0475
Adhesive bonding technology is playing an increasingly important role in automotive industry. Ultrasonic evaluation of adhesive joints of metal sheets is a challenging problem in Non-Destructive Testing due to the large acoustic impedance mismatch between metal and adhesive, variability in the thickness of metal and adhesive layers, as well as variability in joint geometry. In this paper, we present the results from a matrix array of small flat ultrasonic transducers for evaluation of adhesively bonded joints in both laboratory and production environments. The reverberating waveforms recorded by the array elements are processed to obtain an informative parameter, whose two-dimensional distribution can be presented as a C-scan. Energy of the reflected waveform, normalized with respect to the energy obtained from an area with no adhesive, is a robust parameter for discriminating "adhesive/no-adhesive" regions.
Technical Paper

A Method for Rapid Durability Test Development

2017-03-28
2017-01-0199
Designing a durability test for an automatic transmission that appropriately reflects customer usage during the lifetime of the vehicle is a formidable task; while the transmission and its components must survive severe usage, overdesigning components leads to unnecessary weight, increased fuel consumption and increased emissions. Damage to transmission components is a function of many parameters including customer driving habits and vehicle and transmission characteristics such as weight, powertrain calibration, and gear ratios. Additionally, in some cases durability tests are required to verify only a subset of the total parameter space, for example, verifying only component modifications. Lastly, the ideal durability test is designed to impose the worst case loading conditions for the maximum number of internal components, be as short as practicable to reduce testing time, with minimal variability between tests in order to optimize test equipment and personnel resources.
Technical Paper

A Method of Predicting Brake Specific Fuel Consumption Maps

1999-03-01
1999-01-0556
A method of predicting brake specific fuel consumption characteristics from limited specifications of engine design has been investigated. For spark ignition engines operating on homogeneous mixtures, indicated specific fuel consumption based on gross indicated power is related to compression ratio and spark timing relative to optimum values. The influence of burn rate is approximately accounted for by the differences in spark timings required to correctly phase combustion. Data from engines of contemporary design shows that indicated specific fuel consumption can be defined as a generic function of relative spark timing, mixture air/fuel ratio and exhaust gas recirculation rate. The additional information required to generate brake specific performance maps is cylinder volumetric efficiency, rubbing friction, auxiliary loads, and exhaust back pressure characteristics.
X