Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

An Estimation of Supporting Hand Forces for Common Automotive Assembly Tasks

2008-06-17
2008-01-1914
Assembly operators are rarely observed performing one-handed tasks where the unutilized hand is entirely inactive. Therefore, this study was designed to determine the forces applied to supporting hands, by automotive assembly operators, during common one-handed tasks such as hose installations or electrical connections. The data were computed as a percentage of body weight and a repeated measures analysis of variance (ANOVA) (p<0.05) was conducted. Supporting hand forces were observed to range from 5.5% to 12.1% of body mass across a variety of tasks. The results of this study can be used to account for these supporting hand forces when performing a biomechanical/ergonomic analysis.
Technical Paper

Automotive Manufacturing Task Analysis: An Integrated Approach

2008-06-17
2008-01-1897
Automotive manufacturing presents unique challenges for ergonomic analysis. The variety of tasks and frequencies are typically not seen in other industries. Moving these challenges into the realm of digital human modeling poses new challenges and offers the opportunity to create and enhance tools brought over from the traditional reactive approach. Chiang et al. (2006) documented an enhancement to the Siemen's Jack Static Strength Prediction tool. This paper will document further enhancements to the ErgoSolver (formerly known as the Ford Static Strength Prediction Solver).
Journal Article

The Use of Physical Props in Motion Capture Studies

2008-06-17
2008-01-1928
It is generally accepted that all postures obtained from motion capture technology are realistic and accurate. Physical props are used to enable a subject to interact more realistically within a given virtual environment, yet, there is little data or guidance in the literature characterizing the use of such physical props in motion capture studies and how these effect the accuracy of postures captured. This study was designed to evaluate the effects of various levels of physical prop complexity on the motion-capture of a wide variety of automotive assembly tasks. Twenty-three subjects participated in the study, completing twelve common assembly tasks which were mocked up in a lab environment. There were 3 separate conditions of physical props: Crude, Buck, and Real. The Crude condition provided very basic props, or no props at all, while the Buck condition was a more elaborate attempt to provide detailed props. Lastly, the Real condition included real vehicle sections and real parts.
X