Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effects of Braking on Suspension Loads in Potholes

2007-04-16
2007-01-1647
Braking has a strong effect on a vehicle's front suspension loads when the vehicle is driven over a pothole. The suspension loads of a vehicle braking while going over a pothole are also affected by vehicle design, vehicle weight and speed. In this study a simplified suspension model is presented, which is then validated by the simulation of a vehicle model. The simplified suspension model provides an efficient approach to evaluate effects of braking on wheel rebound into potholes, which determines the magnitude of impact loads when the tires hit the pothole edge. The vehicle model is used not only to validate the simplified suspension model, but also to provide the information of wheel center loads in addition to the wheel position and velocity. The analysis using the vehicle model agrees with pothole test results. The study reveals how vehicle braking affects the wheel center longitudinal forces during the pothole impact.
Technical Paper

The Effects of Front Suspension Parameters on Road Wheel Toe Dynamics

2001-03-05
2001-01-0482
Front road wheel toe dynamics directly affects tire wear and steering wheel vibration, which in turn negatively impacts customer satisfaction. Though static toe can be preset in assembly plants, the front road wheels can vibrate around steering axes or kingpin axes due to tire mass unbalance and nonuniformity. The frequency of the vibration depends on the wheel size and vehicle speed, while the amplitude of the vibration is not only dictated by the tire forces, but also by suspension and steering parameters. This paper presents a study on the sensitivities of the front road wheel toe dynamics to the parameters of a short-long-arm suspension (SLA) and a parallelogram steering system. These parameters includes hard point shift, steering gear compliance, gear friction, control arm bushing rates, friction in control arm ball joints, and compliance in tie rod outboard joints.
X