Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Comparison of Four Methods for Determining the Octane Index and K on a Modern Engine with Upstream, Port or Direct Injection

2017-03-28
2017-01-0666
Combustion in modern spark-ignition (SI) engines is increasingly knock-limited with the wide adoption of downsizing and turbocharging technologies. Fuel autoignition conditions are different in these engines compared to the standard Research Octane Number (RON) and Motor Octane Numbers (MON) tests. The Octane Index, OI = RON - K(RON-MON), has been proposed as a means to characterize the actual fuel anti-knock performance in modern engines. The K-factor, by definition equal to 0 and 1 for the RON and MON tests respectively, is intended to characterize the deviation of modern engine operation from these standard octane tests. Accurate knowledge of K is of central importance to the OI model; however, a single method for determining K has not been well accepted in the literature.
Journal Article

An Overview of the Effects of Ethanol-Gasoline Blends on SI Engine Performance, Fuel Efficiency, and Emissions

2013-04-08
2013-01-1635
This paper provides an overview of the effects of blending ethanol with gasoline for use in spark ignition engines. The overview is written from the perspective of considering a future ethanol-gasoline blend for use in vehicles that have been designed to accommodate such a fuel. Therefore discussion of the effects of ethanol-gasoline blends on older legacy vehicles is not included. As background, highlights of future emissions regulations are discussed. The effects on fuel properties of blending ethanol and gasoline are described. The substantial increase in knock resistance and full load performance associated with the addition of ethanol to gasoline is illustrated with example data. Aspects of fuel efficiency enabled by increased ethanol content are reviewed, including downsizing and downspeeding opportunities, increased compression ratio, fundamental effects associated with ethanol combustion, and reduced enrichment requirement at high speed/high load conditions.
X