Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Effects of Fuel Composition on Mixture Formation in a Firing Direct-Injection Spark-Ignition (DISI) Engine: An Experimental Study using Mie-Scattering and Planar Laser-Induced Fluorescence (PLIF) Techniques

Two-dimensional Mie-scattering and laser-induced fluorescence techniques were applied to investigate the effects of fuel composition on mixture formation within a firing direct-injection spark-ignition (DISI) engine. A comparison was made between the spray characteristics and in-cylinder fuel distributions resulting from the use of a typical multi-component gasoline (European specification premium-grade unleaded), a single-component research fuel (iso-octane), and a three-component research fuel (iso-pentane, iso-octane and n-nonane). Studies were performed at three different injection timings under cold and part-warm conditions. The results indicate that fuel composition affects both the initial spray formation and the subsequent mixture formation process. Furthermore, the sensitivity of the mixing process to the effects of fuel volatility was shown to depend on injection timing.
Technical Paper

Effects of Fuel Injection Pressure in an Optically-Accessed DISI Engine with Side-Mounted Fuel Injector

This paper presents the results of an experimental study into the effects of fuel injection pressure on mixture formation within an optically accessed direct-injection spark-ignition (DISI) engine. Comparison is made between the spray characteristics and in-cylinder fuel distributions due to supply rail pressures of 50 bar and 100 bar subject to part-warm, part-load homogeneous charge operating conditions. A constant fuel mass, corresponding to stoichiometric tune, was maintained for both supply pressures. The injected sprays and their subsequent liquid-phase fuel distributions were visualized using the 2-D laser Mie-scattering technique. The experimental injector (nominally a hollow-cone pressure-swirl design) was seen to produce a dense filled spray structure for both injection pressures under investigation. In both cases, the leading edge velocities of the main spray suggest the direct impingement of liquid fuel on the cylinder walls.
Technical Paper

Fiber Optic Sensor for Crank Angle Resolved Measurements of Burned Gas Residual Fraction in the Cylinder of an SI Engine

A fiber optic infrared spectroscopic sensor was developed to measure the crank angle resolved residual fraction of burned gas retained in the cylinder of a four-stroke SI engine. The sensor detected the attenuation of infrared radiation in the 4.3 μm infrared vibrational-rotational absorption band of CO2. The residual fraction remaining in the cylinder is proportional to the CO2 concentration. The sensor was tested in a single-cylinder CFR spark ignition engine fired on propane at a speed of 700 rpm. The sensor was located in one of two spark plug holes of the CFR engine. A pressure-transducer-type spark plug was used to record the cylinder pressure and initiate the spark. The temporal resolution of the measurements was 540 μs (equivalent to 2.3 crank angle degrees) and the spatial resolution was 6 mm. Measurements were made during the intake and compression stroke for several intake manifold pressures. The compression ratio of the engine was varied from 6.3 to 9.5.