Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Measurement and Analysis of the Residual Gas Fraction in an SI Engine with Variable Cam Timing

A spontaneous Raman scattering diagnostic was used to measure the residual fraction in a single-cylinder, 4-valve optically accessible engine. The engine was operated at 1500 rpm on pre-vaporized iso-octane at several intake manifold pressures (50-90 kPa). Cam phasing was varied to determine the effect of intake valve timing and valve overlap on the residual mass fraction of the engine. A simple model based on the ideal Otto cycle and 1D gas flow through the exhaust valves was proposed to analyze the results of the Raman experiment. The model showed good agreement (R2=0.91) with the experimental results and demonstrated its potential for use as a method to estimate the residual fraction in an engine from available dynamometer data. The experimental results showed that the residual fraction was reduced at higher manifold pressures due to less backflow through the exhaust valves and varied with intake cam phasing.
Technical Paper

PIV Characterization of a 4-valve Engine with a Camshaft Profile Switching (CPS) system

Particle Image Velocimetry (PIV) measurements were performed on a single cylinder optically accesible version of a 3.0L 4-valve engine using a Camshaft Profile Switching (CPS) system. The flow field was investigated at two engine speeds (750 and 1500 rpm), two manifold pressures (75 and 90 kPa) and two intake cam centerlines (maximum lift at 95° and 115° aTDCi respectively). Images were taken in the swirl plane at 10 mm and 40 mm below the deck with the piston at 300° aTDC of intake (60° bTDC compression) and BDC respectively. In the tumble plane, images were taken in a plane bisecting the intake valves with the piston at BDC and 300° aTDC. The results showed that the swirl ratio was slightly lower for this system compared with a SCV system (swirl control valve in the intake port) under the same operating conditions. The swirl and tumble ratios generated were not constant over the range of engine speeds and manifold pressures (MAP) but instead increased with engine speed and MAP.