Refine Your Search




Search Results

Technical Paper

1D Model for Correcting the Rate of Injection Signal Based on Geometry and Temperature Influence

The fuel consumption and emissions of diesel engines is strongly influenced by the injection rate pattern, which influences the in-cylinder mixing and combustion process. Knowing the exact injection rate is mandatory for an optimal diesel combustion development. The short injection time of no more than some milliseconds prevents a direct flow rate measurement. However, the injection rate is deduced from the pressure change caused by injecting into a fuel reservoir or pipe. In an ideal case, the pressure increase in a fuel pipe correlates with the flow rate. Unfortunately, real measurement devices show measurement inaccuracies and errors, caused by non-ideal geometrical shapes as well as variable fuel temperature and fuel properties along the measurement pipe. To analyze the thermal effect onto the measurement results, an available rate measurement device is extended with a flexible heating system as well as multiple pressure and temperature sensors.
Technical Paper

A CFD Validation Study for Automotive Aerodynamics

A study was conducted using Ford's nine standard CFD calibration models as described in SAE paper 940323. The models are identical from the B-pillar forward but have different back end configurations. These models were created for the purpose of evaluating the effect of back end geometry variations on aerodynamic lift and drag. Detailed experimental data is available for each model in the form of surface pressure data, surface flow visualization, and wake flow field measurements in addition to aerodynamic lift and drag values. This data is extremely useful in analyzing the accuracy of the numerical simulations. The objective of this study was to determine the capability of a digital physics based commercial CFD code, PowerFLOW ® to accurately simulate the physics of the flow field around the car-like benchmark shapes.
Technical Paper

A Comparison of Four Methods for Determining the Octane Index and K on a Modern Engine with Upstream, Port or Direct Injection

Combustion in modern spark-ignition (SI) engines is increasingly knock-limited with the wide adoption of downsizing and turbocharging technologies. Fuel autoignition conditions are different in these engines compared to the standard Research Octane Number (RON) and Motor Octane Numbers (MON) tests. The Octane Index, OI = RON - K(RON-MON), has been proposed as a means to characterize the actual fuel anti-knock performance in modern engines. The K-factor, by definition equal to 0 and 1 for the RON and MON tests respectively, is intended to characterize the deviation of modern engine operation from these standard octane tests. Accurate knowledge of K is of central importance to the OI model; however, a single method for determining K has not been well accepted in the literature.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Customer Driven Reliability and Quality Methodology for Existing Products

In order to maximize customer satisfaction in today's global market place, the quality of products and services need to be improved continually. Increased focus on quality, with the attendant proliferation of methods and tools, has created the need for a comprehensive framework to guide the selection of the tools. Individuals within an organization need to know what tools are appropriate in a given situation, and when, where and how the knowledge gained from an effort should be documented. In addition, a common nomenclature to convey quality related information to each other would avoid confusion and improve the communication process thus improving the effectiveness and productivity of the organization. This paper integrates tools that have evolved recently with the old tools that have been in use for a number of years.
Technical Paper

A Decade of Life Sciences Experiment Unique Equipment Development for Spacelab and Space Station, 1990-1999

Ames Research Center’s Life Sciences Division has developed and flown an extensive array of spaceflight experiment unique equipment (EUE) during the last decade of the twentieth century. Over this ten year span, the EUE developed at ARC supported a vital gravitational biology flight research program executed on several different platforms, including the Space Shuttle, Spacelab, and Space Station Mir. This paper highlights some of the key EUE elements developed at ARC and flown during the period 1990-1999. Resulting lessons learned will be presented that can be applied to the development of similar equipment for the International Space Station.
Technical Paper

A Functional View of Engineering

Many descriptions of product development are based on a timeline of activity. Timelines typically do not characterize the underlying strategy and flexibility embodied in the technical activity that actually takes place between activity nodes. Timelines alone will inhibit evolving to a more rational approach to product development. The view of engineering described in this paper is a functional view of engineering. It is what engineers do. It is aligned with the technical tools used by engineers. It applies to both product development and manufacturing. It's purpose is to enhance understanding of the function of engineering activities, including reliability.
Technical Paper

A Method of Predicting Brake Specific Fuel Consumption Maps

A method of predicting brake specific fuel consumption characteristics from limited specifications of engine design has been investigated. For spark ignition engines operating on homogeneous mixtures, indicated specific fuel consumption based on gross indicated power is related to compression ratio and spark timing relative to optimum values. The influence of burn rate is approximately accounted for by the differences in spark timings required to correctly phase combustion. Data from engines of contemporary design shows that indicated specific fuel consumption can be defined as a generic function of relative spark timing, mixture air/fuel ratio and exhaust gas recirculation rate. The additional information required to generate brake specific performance maps is cylinder volumetric efficiency, rubbing friction, auxiliary loads, and exhaust back pressure characteristics.
Technical Paper

A NVH CAE approach performed on a vehicle closures pumping issue

The use of finite element modeling (FEM) tools is part of the most of the current product development projects of the automotive industry companies, replacing an important part of the physical tests with lower costs, higher speed and with increasing accuracy by each day. In addition to this, computer-aided engineering (CAE) tools can be either used after the product is released, at any moment of the product life, in many different situation as a new feature release, to validate a more cost-efficient design proposal or to help on solving some manufacturing problem or even a vehicular field issue. Different from the phase where the product is still under development, when standard virtual test procedures are performed in order to validate the vehicle project, in this case, where engineers expertise plays a very important role, before to proceed with any standard test it is fundamental to understand the physics of the phenomena that is causing the unexpected behavior.
Technical Paper

A New Analysis Method for Accurate Accounting of IC Engine Pumping Work and Indicated Work

In order to improve fuel economy, engine manufacturers are investigating various technologies that reduce pumping work in spark ignition engines. Current cylinder pressure analysis methods do not allow valid comparison of pumping work reduction strategies. Existing methods neglect valve timing effects which occur during the expansion and compression strokes, but are actually part of the gas exchange process. These additional pumping work contributions become more significant when evaluating non-standard valve timing concepts. This paper outlines a new analysis method for calculating the pumping work and indicated work of a 4-stroke internal combustion engine. Corrections to PMEP and IMEP are introduced which allow the valid comparison of pumping work and indicated efficiency between engines with different pumping work reduction strategies.
Technical Paper

A Parametric Approach for Vehicle Frame Structure Dynamics Analysis

The capability to drive NVH quality into vehicle frame design is often compromised by the lack of available predictive tools that can be developed and applied within the timeframe during which key architectural design decisions are required. To address this need, a new parametric frame modeling approach was developed and is presented in this paper. This fully parameterized model is capable of fast modal, static stiffness & weight assessments, as well as DSA/optimization for frame design changes. This tool has been proven to be effective in improving speed, quality and impact of NVH hardware decisions.
Technical Paper

A Plastic Appliqué's Strain Field Determination by Experimental Shearographic Analyses Under an Applied Thermal Load

The objective of this paper is to develop a test capable of ranking lift-gates based on strain concentration levels reflected in fringe characteristics in the known stress/strain concentration and fracture vicinity. First, the system (lift gate glass, adhesive and appliqué) is chosen as test sample since the subsystem (local appliqué) does not exhibit the failure mode observed in the field test. Subsequently, it has been identified that the thermal component (rather than mechanical) is the predominant load by laser scanning vibrometry and confirmed via field test data. Next, digital shearography has been selected as the measurement and visualization tool of strain distribution due to its various advantages such as full field view and non-contact advantages. Finally, the test method has been applied to rank and optimize the structural configuration around appliqués' to reduce / eliminate failure.
Technical Paper

A Testbed for the Mars Returned Sample Handling Facility

Samples of Mars surface material will return to Earth in 2014. Prior to curation and distribution to the scientific community the returned samples will be isolated in a special facility until their biological safety has been assessed following protocols established by NASA’s Planetary Protection Office. The primary requirements for the pre-release handling of the Martian samples include protecting the samples from the Earth and protecting the Earth from the sample. A testbed will be established to support the design of such a facility and to test the planetary protection protocols. One design option that is being compared to the conventional Biological Safety Level 4 facility is a double walled differential pressure chamber with airlocks and automated equipment for analyzing samples and transferring them from one instrument to another.
Technical Paper

A/C Moan - its Diagnostics and Control

Air-conditioning (A/C) induced moan is a very commonly observed phenomenon in automotive refrigerant systems. Since most of the automotive A/C systems cycle ON/OFF four to six times every minute, the A/C induced moan is quite readily audible under engine idle and even while driving, especially under lower engine/vehicle speeds. It is not unusual for an A/C compressor to moan or not, on some vehicle/s under certain operating conditions. Most of the OEMs resolve or suppress the A/C moan potential to barely audible levels. However, under some unique and extreme operating conditions, A/C moan is quite readily induced and often results in customer complaints. This paper discusses A/C moan related root-causes, sources and paths of propagation. A systematic diagnostic test-procedure is also described to diagnose and develop the needed most cost-effective design-fixes. Finally, based on this case-study - some objective targets are recommended to suppress the A/C moan to acceptable levels.
Technical Paper

Adaptive EGR Cooler Pressure Drop Estimation

The pre EGR valve pressure is an important measurement for the Diesel engine air handling system. It is commonly used for the EGR flow calculation during engine transient operation. Due to the erosive exhaust gas, an EGR pressure sensor will eventually have gold corrosion resulting in drive-ability issues. Therefore, a software replacement for the EGR pressure sensor is desirable. However, when the EGR valve is on the cold side of the EGR cooler, the accuracy of the EGR pressure estimation deteriorates because of the variability of the pressure drop across the EGR cooler due to EGR cooler fouling. In this paper, an adaptive scheme is developed to improve the accuracy of pre EGR valve pressure estimation in the presence of EGR cooler fouling for diesel engines. The pressure drop across the EGR cooler is shown to be proportional to the velocity pressure of the EGR flow through the cooler.
Technical Paper

Air Charge Estimation in Camless Engines

An electromechanically driven valve train offers unprecedented flexibility to optimize engine operation for each speed load point individually. One of the main benefits is the increased fuel economy resulting from unthrottled operation. The absence of a restriction at the entrance of the intake manifold leads to wave propagation in the intake system and makes a direct measurement of air flow with a hot wire air meter unreliable. To deliver the right amount of fuel for a desired air-fuel ratio, we therefore need an open loop estimate of the air flow based on measureable or commanded signals or quantities. This paper investigates various expressions for air charge in camless engines based on quasi-static assumptions for heat transfer and pressure.
Technical Paper

Air Charge and Residual Gas Fraction Estimation for a Spark-Ignition Engine Using In-Cylinder Pressure

An accurate estimation of cycle-by-cycle in-cylinder mass and the composition of the cylinder charge is required for spark-ignition engine transient control strategies to obtain required torque, Air-Fuel-Ratio (AFR) and meet engine pollution regulations. Mass Air Flow (MAF) and Manifold Absolute Pressure (MAP) sensors have been utilized in different control strategies to achieve these targets; however, these sensors have response delay in transients. As an alternative to air flow metering, in-cylinder pressure sensors can be utilized to directly measure cylinder pressure, based on which, the amount of air charge can be estimated without the requirement to model the dynamics of the manifold.
Technical Paper

Air-Fuel Ratio Dependence of Random and Deterministic Cyclic Variability in a Spark-Ignited Engine

One important design goal for spark-ignited engines is to minimize cyclic variability. A small amount of cyclic variability (slow burns) can produce undesirable engine vibrations. A larger amount of cyclic variability (incomplete burns) leads to increased hydrocarbon consumption/emissions. Recent studies have reported deterministic patterns in cyclic variability under extremely lean (misfiring) operating conditions. The present work is directed toward more realistic non-misfiring conditions. Production engine test results suggest that deterministic patterns in cyclic variability are the consequence of incomplete combustion, hence control algorithms based on the occurrence of these patterns are not expected to be of significant practical value.
Technical Paper

An Adaptive Delay-Compensated PID Air Fuel Ratio Controller

In this work, a discrete,time-based, delay-compensated, adaptive PID control algorithm for air fuel ratio control in an SI engine is presented. The controller operates using feedback from a wide-ranging Universal Exhaust Gas Oxygen (UEGO) sensor situated in the exhaust manifold. Time delay compensation is used to address the difficulties traditionally associated with the relatively long and time-varying time delay in the gas transport process and UEGO sensor response. The delay compensation is performed by computing a correction to the current control move based on the current delay and the corresponding values of the past control moves. The current delay is determined from the measured engine speed and load using a two dimensional map. In order to achieve good servo operation during target changes without compromising regulator performance a two degree of freedom controller design has been developed by adding a pre-filter to the air fuel ratio target.
Technical Paper

An Experimental Procedure for Simulating an SC03 Emissions Test with Air Conditioner On

In a continuing effort to include real-world emissions in regulatory testing, the USEPA has included air conditioning operation as part of the Supplemental Federal Test Procedure (SFTP). Known as the SC03, these tests require automobile manufacturers to construct and maintain expensive environmental chambers. However, the regulations make allowances for a simulation test, if one can be shown to demonstrate correlation with the SFTP results. We present the results from an experiment on a 1998 Ford sedan, which simulates the heat load of a full environmental chamber. Moreover, the test procedure is simpler and more cost effective. The process essentially involves heating the condenser of the air conditioning system by using the heat of the engine, rather than heating the entire vehicle. The results indicate that if the head pressure is used as a feedback signal to the radiator fan, the load generated by a full environmental chamber can be duplicated.