Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparison of C-Shaped and I-Type Cross-Sections for Bumpers Using Compression Molded Thermoplastics

1994-03-01
940171
The C-section bumper design has developed through an evolutionary process and has come to be regarded as a reasonable geometry for frontal bumper impacts, especially for use with glass-filled sheet-stampable thermoplastic composite materials. C-section bumpers are now well proven and accepted in the automotive industry, performing satisfactorily in a variety of crash situations. A new and more complicated cross-section geometry (I-type with multiple ribbing) has recently been proposed for glass-filled thermoplastic composites. While, in some specialized cases, these highly engineered bumper cross-sections can be useful, they may not perform adequately in all reasonable crash scenarios. Further, it is important to consider manufacturing limitations and the realities of material performance in such complex geometries. Data will be presented to question the practical advantages of the use of ribbed bumper designs over the traditional C-section beam.
Technical Paper

A Low Cost, Lightweight Solution for Soft Seamless Airbag Systems

2004-03-08
2004-01-1485
OEM and Tier One integrated suppliers are in constant search of cockpit system components that reduce the overall number of breaks across smooth surfaces. Traditionally, soft instrument panels with seamless airbag systems have required a separate airbag door and a tether or steel hinge mechanism to secure the door during a deployment. In addition, a scoring operation is necessary to ensure predictable, repeatable deployment characteristics. The purpose of this paper is to demonstrate the development and performance of a cost-effective soft instrument panel with a seamless airbag door that results in a reduced number of parts and a highly efficient manufacturing process. Because of the unique characteristics of this material, a cost-effective, lightweight solution to meet both styling requirements, as well as safety and performance criteria, can be attained.
Technical Paper

A Structural Instrument Panel from Glass-Mat Thermoplastic for the Small-Car Market

1997-02-24
970726
Designers and engineers encounter many challenges in developing vehicles for the small-car market. They face constant pressure to reduce both mass and cost while still producing vehicles that meet environmental and safety requirements. At the same time, today's discriminating consumers demand the highest quality in their vehicles. To accommodate these challenges, OEMs and suppliers are working together to improve all components and systems for the high-volume small-car market. An example of this cooperative effort is a project involving an integrated structural instrument panel (IP) designed to meet the specific needs of the small-car platform. Preliminary validation of the IP project, which uses a compression-molded, glass-mat-thermoplastic (GMT) composite and incorporates steel and magnesium, indicates it will significantly reduce part count, mass, assembly time, and overall cost.
Technical Paper

A Study to Define the Relationship of Bulk Resistivity and Paint Transfer Efficiency Using a Conductively Modified Thermoplastic Resin

1998-09-29
982288
Electrostatic painting of exterior body components is considered standard practice in the automotive industry. The trend toward the use of electrostatic painting processes has been driven primarily because of environmental legislation and material system cost reduction efforts. When electrostatically painting thermoplastic body panels, side by side with sheet metal parts, it is imperative that the thermoplastic parts paint like steel. Electrostatic painting of thermoplastics has traditionally required the use of a conductive primer, prior to basecoat and clearcoat application. The use of conductive plastics eliminates the need for this priming step, while improving paint transfer efficiency and first pass yield. These elements provide an obvious savings in material and labor. The most significant benefit, is the positive environmental impact that occurs through the reduction in the emission of volatile organic compounds (VOC's).
Technical Paper

Abusive Testing of Thermoplastic vs. Steel Bumpers Systems

1998-02-23
980106
Over the last decade, on small- and medium-size passenger cars, a new class of front bumper - injection or blow molded from engineering thermoplastics - has been put into production use. These bumper systems provide full 8-km/hr federal pendulum and flat-barrier impact protection, as well as angled barrier protection. Thermoplastic bumpers, offering weight, cost, and manufacturing advantages over conventional steel bumper systems, also provide high surface finish and styling enhancements. However, there remain questions about the durability and engineering applicability of thermoplastic bumper systems to heavier vehicles. This paper presents results of a preliminary study that examines the durability of thermoplastic bumpers drawn from production lots for much lighter compact, and mid-size passenger cars against baseline steel bumper systems currently used on full-size pickup truck and sport-utility vehicles (SUVs). Bumpers were subjected to U.S.
Technical Paper

Application of a MIC Metallic Flake ASA/PC Weatherable Resin Predictive Engineering Package

2006-04-03
2006-01-0135
The automotive industry continues to strive for mold-in-color (MIC) solutions that can provide metallic flake appearances. These MIC solutions can offer a substantial cost out opportunity while retaining a balance of weathering performance and physical properties. This paper discusses a predictive engineering package used to hide, minimize and eliminate flow lines. Material requirements and the methods used to evaluate flowline reduction and placement for visual inspection criteria are detailed. The Nissan Quest® luggage-rack covers are used to illustrate this application. The paper also explores how evolving predictive packages offer expanding possibilities.
Technical Paper

CAE Processing Analysis of Plastic Fenders

1992-09-01
922116
Engineering thermoplastics are being used increasingly in automotive exterior body applications; most of these applications require that the panels be painted “on line” with the rest of the car body at relatively high temperatures. The high temperatures associated with the painting/conditioning of the car have been shown to cause dimensional stability problems on automotive fenders molded from NORYL GTX®. This paper contains the results of an extensive FEA investigation targeted at determining what factors cause dimensional problems in fenders exposed to high heat. The ABAQUS FEA software was used to perform computer simulations of the process and the C-PACK/W software was used to determine molded in stress values.
Technical Paper

Conductive Plastics Leading Fuel Door Technology

2002-03-04
2002-01-0278
This paper will discuss, compare, and contrast current materials, designs, and manufacturing options for fuel filler doors. Also, it will explore the advantages of using conductive thermoplastic substrates over other materials that are commonly used in the fuel filler door market today. At the outset, the paper will discuss the differences between traditional steel fuel filler doors, which use an on-line painting process, and fuel filler doors that use a conductive thermoplastic substrate and require an in-line or off-line painting process. After reviewing the process, this paper will discuss material options and current technology. Here, we will highlight key drivers to thermoplastics acceptance, and look at the cost saving opportunities presented by the inline paint process option using a conductive thermoplastic resin, as well as benefits gained in quality control, component storage and coordination.
Technical Paper

Conductive Polyphenylene Ether/Polyamide Blend for Saturn Exterior Body Panels

2001-03-05
2001-01-0446
The evolution toward the use of electrostatic painting processes has been driven primarily by environmental legislation and efforts to improve efficiencies in the painting process. The development of conductive substrate material compliments the industry trend toward a green environment through further reductions in emissions of volatile organic compounds during the painting process. Traditionally, electrostatic painting of thermoplastics requires that a conductive primer be applied to the substrate prior to topcoat application. The conductive polymer blend of polyphenylene ether and polyamide provides sufficient conductivity to eliminate usage of conductive primers. Additional benefits include improved transfer efficiencies of the primer and top coat systems, uniform film builds across the part, and improved painting of complex geometries.
Technical Paper

Conductive Thermoplastic Resin for Electrostatically Painted Applications

1998-02-23
980983
The formulation of injection moldable thermoplastics with small loadings of graphite nanotubes provides sufficient conductivity in molded parts to allow for use in electrostatic painting applications. Normally, plastic parts need to be painted with a conductive primer prior to the electrostatic painting of base and clear coats. The use of conductive plastics eliminates the need for the priming step, and improves paint transfer efficiency and first pass yield. These elements provide obvious savings in materials and labor. What is less obvious, however, is the dramatic positive environmental impact that can occur through the reduction in emissions of volatile organic compounds (VOCs). Graphite nanotube technology provides advantages over other technologies such as conductive carbon black. In order to reach the percolation threshold for conductivity in carbon-black-containing resins, the loading of carbon black required tends to embrittle the polymer.
Technical Paper

Consistency of Thermoplastic Bumper Beam Impact Performance

1998-02-23
980113
This paper will address several critical aspects of bumper system performance, including vehicle damage protection and crash-severity sensing considerations, energy-absorption capacity and efficiency, and low-speed impact consistency and sensitivity to temperature changes. The objective is to help engineers and designers establish a realistic perspective of the capability of the various technologies based on actual test performance. The scope of the evaluation will include a comparison of several bumper-beam material constructions when subjected to a 16-km/hr swinging barrier impact over a range of temperatures the bumper could see in service (-30 to 60C).
Technical Paper

Design and Development of a Generic Door Hardware Module Concept

1998-02-23
980999
This paper documents the design methodology, part performance, and economic considerations for a generic hardware module applied to a front passenger-car door. Engineering thermoplastics (ETPs), widely used in automotive applications for their excellent mechanical performance, design flexibility, and parts integration, can also help advance the development of modular door-hardware systems. Implementation of these hardware carriers is being driven by pressures to increase manufacturing efficiencies, reduce mass, lower part-count numbers, decrease warranty issues, and cut overall systems costs. In this case, a joint team from GE Plastics, Magna-Atoma International/Dortec, and Excel Automotive Systems assessed the opportunity for using a thermoplastic door hardware module in a current mid-size production vehicle. Finite-element analysis showed that the thermoplastic module under study withstood the inertial load of the door being slammed shut at low, room, and elevated temperatures.
Technical Paper

Design and Development of an Engineering Thermoplastic Energy Absorbing System for Automotive Knee Bolsters

1997-02-24
970725
Traditional knee bolster designs consist of a first-surface plastic component covered by paint or vinyl skin and foam, with a subsurface steel plate that transfers knee loads to 2 steel crush brackets. The design was developed to meet FMVSS 208 and OEM requirements. More recently, technological developments have allowed for the steel plate to be replaced by a ribbed plastic structure, which offers cost and weight savings to the instrument panel system. However, it is still a hybrid system that combines plastic with the 2 steel crush brackets. This paper will detail the development of an all-plastic design, which consolidates the plastic ribbed reinforcement plate with the 2 steel crush cans in a single engineering thermoplastic component. The new system is expected to offer further cost and weight savings.
Technical Paper

Determination of Beam Pattern Movement for Engineering Thermoplastic Complex Reflectors

1995-02-01
950830
Complex reflectors -- also known as faceted or optics-in reflectors -- are becoming a popular forward lighting option on passenger vehicles. When optics are located in the reflector, changes in the shape of the reflector due to thermal expansion, stress relaxation, and creep become more critical than with conventional lenses because changes in reflector shape shift the optics, causing beam patterns to move. To assess such movement, complex reflectors molded of injection molded thermoplastics were photometered using an LMT GO1200 gonio-photometer. Isocandela plots were generated at several points in time, and amount of beam pattern movement and pattern brightness changes were calculated. While the results of the study showed that the complex reflectors molded of engineering thermoplastic experienced more beam pattern shift than would be seen with a BMC reflector, a combination of proper material selection and optics design can overcome this movement.
Technical Paper

Development of a Blow Molded, Thermoplastic Front Bumper System Offering Angled Barrier Protection

1997-02-24
970486
A new front bumper, blow molded from an engineering thermoplastic, is being used to provide full 8 km/h federal pendulum and flat-barrier impact protection, as well as angled barrier protection on a small passenger car. The low intrusion bumper is compatible with the vehicle's single-sensor airbag system and offers a 5.8 kg mass savings compared with competitive steel/foam systems. This paper will describe the design and development of the bumper system and the results achieved during testing.
Technical Paper

Development of an Advanced, Engineering Thermoplastic Step-Pad Bumper for a Sport Utility Vehicle

1997-02-24
970485
A conceptual step-pad bumper system has been designed for a sport utility vehicle. This bumper incorporates an all-thermoplastic solitary beam/fascia with a Class A finish and a replaceable, grained thermoplastic olefin (TPO) or urethane step pad. The rear beam is injection molded and the cover plate features integrated through-towing capabilities and electrical connections. The bumper is designed to pass FMVSS Part 581, 8 km/h impacts. The system can potentially offer a 5.0-13.6 kg weight savings at comparable costs to conventional step-pad bumper systems. This paper will detail the design and development of the concept and finite-element analysis (FEA) validation.
Technical Paper

Development of the Xterra® Luggage-rack System from Nissan with ASA/PC Weatherable Resin

2000-03-06
2000-01-1068
The luggage-rack-system market has historically been dominated by nylon- (polyamide)-based resins. The recent design and development of the Xterra® luggagerack system (LRS) from Nissan represents a new trend in luggage-rack system design. Nissan utilized an ASA/PC weatherable thermoplastic resin to develop its special gray, molded-in-color luggage-rack components. The balance of weathering performance and physical properties that ASA/PC resin offers allowed the automaker to design these structural components and avoid the high cost of paint. This paper discusses the design and development of the luggage-rack system as well as the process utilized to evaluate ASA/PC resin for performance in static loading, heat resistance, vibration performance, etc. Furthermore, the paper explores how ASA/PC resin parts might be designed in for future luggage-rack-system applications.
Technical Paper

Energy Transfer Characteristics of Thermoplastic Bumper Beams in a Pendulum Impact

1992-02-01
920523
Three commonly used energy management systems (expanded polypropylene foam, collapsing honeycomb and hydraulic shock absorbers) were fully characterized in 2.2 m/s pendulum bumper impact testing. This work was done to better understand the dynamic energy transfer and absorption of the system components and any synergies which exist between them. The test results showed that the energy absorbing systems which exhibited the best load and deflection performance when considered as individual components do not always work the most synergistically with the reinforcement beam. Simply examining the energy absorber's performance alone did not truly reflect the ability of the beam/absorber system's ability to manage energy.
Technical Paper

Energy-Absorbing Thermoplastics for Head Impact Applications

1996-02-01
960154
The August 1996 expansion of FMVSS 201 established head impact performance criteria for upper interior components This standard has forced automotive manufacturers, designers, and suppliers to change their thinking for interiors, especially pillars, compliance with FMVSS 201 will require new, structural designs and energy-absorbing materials An ongoing study has examined the implications of FMVSS 201 and its effect on pillars The results of this study have demonstrated how energy-absorbing engineering thermoplastics can be used to meet and exceed the requirements of the head impact legislation through single-piece pillar trims
Technical Paper

Engineering Thermoplastic Energy Absorbers for Bumpers

1999-03-01
1999-01-1011
Automotive styling trends point to reduced bumper overhang, greater sweeps, and reduced overall package space for the bumper system. At the same time engineers are charged with improving bumper performance to reduce collision repair costs and enhance occupant safety further. Two key performance parameters for the bumper to meet these conflicting objectives are fast but controlled loading and efficient energy absorption (EA). The majority of today's North American passenger-car bumper systems consist of a reinforcing bar either of steel, aluminum, or composite construction, and an energy absorption media. The most widely used energy-absorber construction is made from an expanded-polypropylene foam (EPP). Honeycomb energy absorbers, which are made from an ethylene vinyl acetate (EVA) copolymer, are also still used on some of today's cars. This paper will address an alternative to the bumper energy absorber systems described above.
X