Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Comparison of Time-Averaged Piston Temperatures and Surface Heat Flux Between a Direct-Fuel Injected and Carbureted Two-Stroke Engine

1998-02-23
980763
Time-averaged temperatures at critical locations on the piston of a direct-fuel injected, two-stroke, 388 cm3, research engine were measured using an infrared telemetry device. The piston temperatures were compared to data [7] of a carbureted version of the two-stroke engine, that was operated at comparable conditions. All temperatures were obtained at wide open throttle, and varying engine speeds (2000-4500 rpm, at 500 rpm intervals). The temperatures were measured in a configuration that allowed for axial heat flux to be determined through the piston. The heat flux was compared to carbureted data [8] obtained using measured piston temperatures as boundary conditions for a computer model, and solving for the heat flux. The direct-fuel-injected piston temperatures and heat fluxes were significantly higher than the carbureted piston. On the exhaust side of the piston, the direct-fuel injected piston temperatures ranged from 33-73 °C higher than the conventional carbureted piston.
Technical Paper

A Correlation Study between the Full Scale Wind Tunnels of Chrysler, Ford, and General Motors

2008-04-14
2008-01-1205
A correlation of aerodynamic wind tunnels was initiated between Chrysler, Ford and General Motors under the umbrella of the United States Council for Automotive Research (USCAR). The wind tunnels used in this correlation were the open jet tunnel at Chrysler's Aero Acoustic Wind Tunnel (AAWT), the open jet tunnel at the Jacobs Drivability Test Facility (DTF) that Ford uses, and the closed jet tunnel at General Motors Aerodynamics Laboratory (GMAL). Initially, existing non-competitive aerodynamic data was compared to determine the feasibility of facility correlation. Once feasibility was established, a series of standardized tests with six vehicles were conducted at the three wind tunnels. The size and body styles of the six vehicles were selected to cover the spectrum of production vehicles produced by the three companies. All vehicles were tested at EPA loading conditions. Despite the significant differences between the three facilities, the correlation results were very good.
Technical Paper

A New Approach to Evaluating Spot Welds for Automotive Durability

1998-09-29
982277
The need for accurate virtual prototyping prediction is well documented in the literature. For welded body structures one notable shortcoming has been the ability for finite element analysis (FEA) to accurately predict the failure of welded joints due to cyclic loading. A new approach to representing spot-welds for durability evaluation in automotive sheet metal structures is presented here. Excellent correlation with spot-weld failures in actual tests have been observed through this modeling approach. We present a method of representing spot-welds using the finite element method. This method has shown to be able of predicting the behavior of spot-welds prior to the build of any prototypes or testing. Further, for spot-weld failures we present evidence that reveals which radial quadrant of the spot-weld will contain the failure. This method also allows engineers to determine the mechanism of failure. This paper describes in detail the spot-weld modeling method.
Technical Paper

A Qualitative and Quantitative Aerodynamic Study of a Rotating Wheel inside a Simplified Vehicle Body and Wheel Liner Cavity

2019-04-02
2019-01-0658
As automotive OEMs (Original Equipment Manufacturer) struggle to reach a balance between Design and Performance, environmental legislations continues to demand more rapid gains in vehicle efficiency. As a result, more attention is being given to the contributions of both tire and wheels. Not only tire rolling resistance, but also tire and wheel aerodynamics are being shown to be contributors to overall efficiency. To date, many studies have been done to correlate CFD simulations of rotating wheels both in open and closed wheeled environments to windtunnel results. Whereas this ensures proper predictive capabilities, little focus has been given to thoroughly explaining the physics that govern this complex environment. This study seeks to exhaustively investigate the complex interactions between the ground, body, and a rotating tire/wheel.
Technical Paper

A Rational Approach to Qualifying Materials for Use in Fuel Systems

2000-06-19
2000-01-2013
About 10 years ago in the US, an automotive OEM consortium formed the Oxygenated Fuels Task Force which in turn created the SAE Cooperative Research Project Group 2 to develop a simple rational method for qualifying materials. At that time the focus was Methanol/Gasoline blends. This work resulted in SAE J1681, Gasoline/Methanol Mixtures for Materials Testing. Recently this document was rewritten to make it the single, worldwide, generic source for fuel system test fluids. The paper will describe the rationale for selecting the fuel surrogate fluids and why this new SAE standard should replace all existing test fuel or test fluid standards for fuel system materials testing.
Technical Paper

A Response Surface Based Tool for Evaluating Vehicle Performance in the Pedestrian Leg Impact Test

2008-04-14
2008-01-1244
An interactive tool for predicting the performance of vehicle designs in the pedestrian leg impact test has been developed. This tool allows users to modify the design of a vehicle front structure through the use of a graphical interface, and then evaluates the performance of the design with a response surface. This performance is displayed in the graphical interface, providing the user with nearly instantaneous feedback to his design changes. An example is shown that demonstrates how the tool can be used to help guide the user towards vehicle designs that are likely to improve performance. As part of the development of this tool, a simplified, parametric finite element model of the front structure of the vehicle was created. This vehicle model included eleven parameters that could be adjusted to change the structural dimensions and structural behavior of the model.
Technical Paper

A Robust Preignition Rating Methodology: Evaluating the Propensity to Establish Propagating Flames under Real Engine Conditions

2017-10-08
2017-01-2241
In this work, an experimental and analysis methodology was developed to evaluate the preignition propensity of fuels and engine operating conditions in an SI engine. A heated glow plug was introduced into the combustion chamber to induce early propagating flames. As the temperature of the glowplug varied, both the fraction of cycles experiencing these early flames and the phasing of this combustion in the engine cycle varied. A statistical methodology for assigning a single-value to this complex behavior was developed and found to have very good repeatability. The effects of engine operating conditions and fuels were evaluated using this methodology. While this study is not directly studying the so-called stochastic preignition or low-speed preignition problem, it studies one aspect of that problem in a very controlled manner.
Technical Paper

A Robust Procedure for Convergent Nonparametric Multivariate Metamodel Design

2004-03-08
2004-01-1127
Fast-running metamodels (surrogates or response surfaces) that approximate multivariate input/output relationships of time-consuming CAE simulations facilitate effective design trade-offs and optimizations in the vehicle development process. While the cross-validated nonparametric metamodeling methods are capable of capturing the highly nonlinear input/output relationships, it is crucial to ensure the adequacy of the metamodel error estimates. Moreover, in order to circumvent the so-called curse-of-dimensionality in constructing any nonlinear multivariate metamodels from a realistic number of expensive simulations, it is necessary to reliably eliminate insignificant inputs and consequently reduce the metamodel prediction error by focusing on major contributors. This paper presents a robust data-adaptive nonparametric metamodeling procedure that combines a convergent variable screening process with a robust 2-level error assessment strategy to achieve better metamodel accuracy.
Technical Paper

A Study of Material Compatibility With Deionized Water

2003-03-03
2003-01-0804
Deionized (DI) water is being used for humidification and cooling on some fuel cell designs. This highly purified water is corrosive, yet the high purity is required to maintain the function and durability of the fuel cell. A study of the deionized water system was undertaken to determine the effect of various materials on water quality, and also to determine the effect of deionized water on each material. The test setup was designed to circulate fluid from a reservoir, similar to an actual application. The fluid temperature, pressure, and flow rate were controlled. The resistivity of the water was observed and recorded. Pre- and post-testing of the water and the materials was performed. The goal is to achieve system cleanliness and durability similar to a stainless steel system using lighter, less expensive materials. This paper describes the test setup, test procedures, and the overall results for the eight materials tested.
Journal Article

A Study on Monetary Cost Analysis for Product-Line Architectures

2008-04-14
2008-01-0280
We present a cost model that analyzes monetary costs for a product-line architecture to help the optimization of the architecture. The paper illustrates the usefulness of this methodology in a case study based upon the design exploration of a product-line architecture for an active safety system.
Technical Paper

A Study on the Camshaft Lobe Microstructure Obtained by Different Processing

2012-10-02
2012-36-0499
The present work aims to characterize the microstructure of valvetrain camshaft lobes that are currently applied in the automotive industry, obtained by different processing routes. The cam lobe microstructure has been assessed by microscopy, whereas the mechanical properties by hardness profile measurements on the surface region. Microconstituents type and form, composing the final microstructure at the cam lobe work region, are defined by the casting route and/or post-heat treatment process other than alloy chemical composition, so that knowledge and control of processing route is vital to assure suitable valvetrain system assembly performance and durability. Most of the mechanical solicitations on the part occur at the interface between cam and follower; the actual contact area is significantly smaller than the apparent area. As a result, the microstructure at and near the surface performs a direct role on the performance of the valvetrain, cam lobe and its counterpart.
Technical Paper

AUTOSAR on the Road

2008-10-20
2008-21-0019
The AUTomotive Open System ARchitecture (AUTOSAR) Development Partnership has published early 2008 the specifications Release 3.0 [1], with a prime focus on the overall architecture, basic software, run time environment, communication stacks and methodology. Heavy developments have taken place in the OEM and supplier community to deliver AUTOSAR loaded cars on the streets starting 2008 [2]. The 2008 achievements have been: Improving the specifications in order to secure the exploitation for body, chassis and powertrain applications Adding major features: safety related functionalities, OBD II and Telematics application interfaces.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

Active Fuel Management™ Technology: Hardware Development on a 2007 GM 3.9L V-6 OHV SI Engine

2007-04-16
2007-01-1292
In the North American automotive market, cylinder deactivation by means of engine valve deactivation is becoming a significant enabler in reducing the Brake Specific Fuel Consumption (BSFC) of large displacement engines. This allows for the continued market competitiveness of large displacement spark ignition (SI) engines that provide exceptional performance with reduced fuel consumption. As an alternative to a major engine redesign, the Active Fuel Management™ (AFM™) system is a lower cost and effective technology that provides improved fuel economy during part-load conditions. Cylinder deactivation is made possible by utilizing innovative new base engine hardware in conjunction with an advanced control system. In the GM 3.9L V-6 Over Head Valve (OHV) engine, the standard hydraulic roller lifters on the engine's right bank are replaced with deactivating hydraulic roller lifters and a manifold assembly of oil control solenoids.
Technical Paper

Aerodynamic Development of the 2019 Chevrolet Corvette C7 ZR1

2019-04-02
2019-01-0665
This paper presents an overview of the aerodynamic development of the 2019 Chevrolet Corvette C7 ZR1. Extensive wind tunnel testing and computational fluid dynamics simulations were completed to engineer the ZR1’s aerodynamics to improve lift-to-drag efficiency and track capability over previous Corvette offerings. The ZR1 architecture changes posed many aerodynamic challenges including increased vehicle cooling, strict packaging demands, wider front track width, and aggressive exterior styling. Through motorsports-inspired aerodynamic development, the ZR1 was engineered to overcome these challenges through the creation of new devices such as a raised rear wing and front underwing. The resulting Standard ZR1 achieved a top speed of 212 mph making it the fastest Corvette ever [1]. Optionally, the ZR1 with the ZTK Performance Package provides the highest downforce of any Corvette, generating approximately 950 pounds at the ZTK’s top speed [1].
Technical Paper

Aerodynamically Induced Loads on Hood Latch and Hood Retention Systems

2019-04-02
2019-01-0657
Hood latches are provided with a secondary latch mechanism in order to restrain hoods in the event of an incomplete closing operation. It is important thus to understand the aerodynamically induced loading conditions the latch and hood will be subject to in order to design the hood and hood retention system to withstand those loads. In this paper a method of collecting load and displacement data from actual vehicles is presented, as well as an analysis of the results and the implications for hood and latch design.
Technical Paper

Alternate Solution for EV Charge Point Infrastructure in Crowded Urban Areas along the Shore

2019-01-09
2019-26-0121
Many countries including India have aggressively aimed to implement electric vehicles (EVs) usage from 2030 onwards. Companies such as General Motors, Uber, Waymo and Nissan etc. are exploring the realm of autonomous vehicles (AV) for use as taxis as early as 2019. Above facts logically arrive at the solution of Autonomous EVs as taxis. With the commitment towards enabling an all-electric future, there exists a need to provide suitable infrastructure for recharging. Major urban cities located by the shoreline such as New York, Hong Kong, Mumbai, Los Angeles etc. have been facing the space crunch, with real estate prices sky-rocketing exponentially. With this premise, the operating company would need a large amount of space to store their EVs for charging which attributes to a longer downtime. This brings a need for an economical charging location that has a reduced usage of urban infrastructure and energy consumption.
Technical Paper

An Analytical Control Systems Approach to Steering Shudder

1995-05-01
951254
Historically, power steering shudder, a vibration which occurs while steering a vehicle at low speeds, has been approached with systematic component-swapping experiments. This approach was time consuming and did not necessarily yield satisfactory results. In this paper it is shown that steering shudder can be analytically approached as a control system with a closed-loop limit cycle caused by the interaction of the chassis and the steering system. This approach provides a metric for determining a vehicle's propensity to shudder and allows quick predictions of the results of changing components. The approach is model-based, and incorporates chassis and hydraulic system components. Results obtained from the control systems analysis have been validated by a vehicle study, which showed a strong correlation between subjective evaluations and the stability metric provided by the analysis.
Technical Paper

An Approach of the Engine Cylinder Block Material

2013-10-07
2013-36-0113
The increasing demand for energy savings in cars of high production volume, especially those classified as emerging market vehicles, has led the automotive industry to focus on several strategies to achieve higher efficiency levels from their systems and components. One of the most diffuse initiatives is reducing weight through the application of the so-called light alloys. An engine cylinder block can contribute nearly two percent of the vehicle's total mass. Special attention and soon repercussion are given when someone decides to apply a light alloy such as the aluminum to this component. Nonetheless, it is known that peculiarities in terms of physical, chemical and mechanical properties, due to the material nature, associated with regional market characteristics make the initial feasibility analysis study definitely one of the most important stages for the material choice decision.
Journal Article

An Efficient Implementation of the SM Agreement Protocol for a Time Triggered Communication System

2010-10-19
2010-01-2320
FlexRay is a time triggered automotive communication protocol that connects ECUs (Electronic Control Units) on which distributed automotive applications are executed. If exact agreement (e.g. on physical values measured by redundant sensors on different ECUs) must be reached in the presence of asymmetric communication faults, a byzantine agreement protocol like Signed Messages (SM) can be utilized. This paper gives examples of how byzantine faults can emerge in a FlexRay-based system and proposes optimizations for a FlexRay-specific implementation of the SM protocol. The protocol modifications allow for a reduction in the number of protocol messages under a slightly relaxed fault model, as well as for a reduction in the number of messages to be temporarily stored by the ECUs.
X