Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Combined Synchrotron X-Ray Diffraction and Digital Image Correlation Technique for Measurement of Austenite Transformation with Strain in TRIP-Assisted Steels

2016-04-05
2016-01-0419
The strain-induced diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut from the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing.
Journal Article

Strain Field Measurement in the Vicinity of Ductile Rupture from Digital Image Correlation

2008-04-14
2008-01-0856
A methodology that enables two-dimensional strain field measurement in the vicinity of ductile rupture is described. Fully martensitic steel coupons were strained to fracture using a miniature tensile stage with custom data and image acquisition systems. Rupture initiated near the center of each coupon and progressed slowly toward the gage section edges. A state-of-the-art digital image correlation technique was used to compute the true strain field before rupture initiation and ahead of the resulting propagating macroscopic crack before final fracture occurred. True strains of the order of 95% were measured ahead of the crack at later stages of deformation.
Technical Paper

Technological Comparison for Dual Phase and Advanced High Strength Low Alloy Steels Regarding Weldability and Mechanical Properties

2014-04-01
2014-01-0988
This paper presents a technological comparison of weldability and mechanical properties between a dual phase steel (DP) and an advanced high strength low alloy steel (AHSLA) used for automotive structural parts in order to demonstrate some unclear characteristics of each. Samples were spot welded and had their hardness and microstructure analyzed, also a shear test was applied on the weld button area. The edge stretchability was analyzed using hole expansion tests and tensile tests to determine the tensile and yield strength, anisotropic coefficients and total elongation. Data were used to estimate crash energy absorption. The results showed an AHSLA steel with higher than typical ductility. Finally, while DP showed improved stretchability, it was also concluded that such AHSLA could perform better bendability, drawability, flangeability and weldability.
Technical Paper

Tensile and Fatigue Behaviors of Two Thermoplastics Including Strain Rate, Temperature, and Mean Stress Effects

2014-04-01
2014-01-0901
An experimental investigation was conducted to evaluate tensile and fatigue behaviors of two thermoplastics, a neat impact polypropylene and a mineral and elastomer reinforced polyolefin. Tensile tests were performed at various strain rates at room, −40°C, and 85°C temperatures with specimens cut parallel and perpendicular to the mold flow direction. Tensile properties were determined from these tests and mathematical relations were developed to represent tensile properties as a function of strain rate and temperature. For fatigue behavior, the effects considered include mold flow direction, mean stress, and temperature. Tension-compression as well as tension-tension load-controlled fatigue tests were performed at room temperature, −40°C and 85°C. The effect of mean stress was modeled using the Walker mean stress model and a simple model with a mean stress sensitivity factor.
X