Refine Your Search

Topic

Author

Search Results

Technical Paper

A Multidisciplinary Numerical Modeling Tool Integrating CFD and Thermal System Simulation for Automotive HVAC System Design

2012-04-16
2012-01-0644
A multidisciplinary toolset integrating ANSYS FLUENT CFD solver and GM in-house thermal system design tool - e-Thermal has been developed to design automotive HVAC systems. This toolset utilizes COM software interface standard of MS Windows for inter-process communication at simulation run-time to synchronize the two applications and to exchange data. In this report, first, the implementation of this fully transient, coupled method between FLUENT CFD and e-Thermal is introduced. We then apply this integrated tool to simulate a transient A/C operating cycle including hot-soak and cool-down of a cabin. The coupled simulation consists of an A/C and an Air-Handling (HVAC module) system models, and a cabin CFD model. It demonstrates that the coupled method can simulate fully transient HVAC system operations in a vehicle.
Technical Paper

A Statistical Approach for Correlation/Validation of Hot-Soak Terminal Temperature of a Vehicle Cabin CFD Model

2013-04-08
2013-01-0854
A Design for Six Sigma (DFSS) statistical approach is presented in this report to correlate a CFD cabin model with test results. The target is the volume-averaged hot-soak terminal temperature. The objective is to develop an effective correlation process for a simplified CFD cabin model so it can be used in practical design process. It is, however, not the objective in this report to develop the most accurate CFD cabin model that would be too expensive computationally at present to be used in routine design analysis. A 3-D CFD model of a vehicle cabin is the central part of the computer modeling in the development of automotive HVAC systems. Hot-soak terminal temperature is a thermal phenomenon in the cabin of a parked vehicle under the Sun when the overall heat transfer reaches equilibrium. It is often part of the simulation of HVAC system operation.
Technical Paper

Automotive AC System Oil Migration HFO-1234yf Vs. R134a

2011-04-12
2011-01-1173
1 As global automotive manufacturers prepare for the introduction of HFO-1234yf as the low Global Warming Potential (GWP) refrigerant solution in Europe and North America concerns over compressor durability due to oil migration still remain. This preliminary study evaluates several different variables that affect oil migration. Several compressor suppliers each having their own unique oil formulation for HFO-1234yf were included. Comparisons between vehicle tests and various accelerated lab test methods are made. In R134a automotive system the thresholds that cause compressor warranty are well understood. This study will compare AC systems running with HFO-1234yf at the same time identical systems with R134a are run to understand the relative effect of HFO-1234yf versus R134a.
Journal Article

Boundary Condition Effect on the Correlation of an Acoustic Finite Element Passenger Compartment Model

2011-04-12
2011-01-0506
Three different acoustic finite element models of an automobile passenger compartment are developed and experimentally assessed. The three different models are a traditional model, an improved model, and an optimized model. The traditional model represents the passenger and trunk compartment cavities and the coupling between them through the rear seat cavity. The improved model includes traditional acoustic models of the passenger and trunk compartments, as well as equivalent-acoustic finite element models of the front and rear seats, parcel shelf, door volumes, instrument panel, and trunk wheel well volume. An optimized version of the improved acoustic model is developed by modifying the equivalent-acoustic properties. Modal analysis tests of a vehicle were conducted using loudspeaker excitation to identify the compartment cavity modes and sound pressure response to 500 Hz to assess the accuracy of the acoustic models.
Journal Article

Cabin Heating and Windshield Defrosting for Extended Range Electric, Pure Electric, & Plug-in Hybrid Vehicles

2012-04-16
2012-01-0121
Conventional HVAC systems adjust the position of a temperature door, to achieve a required air temperature discharged into the passenger compartment. Such systems are based upon the fact that a conventional (non-hybrid) vehicle's engine coolant temperature is controlled to a somewhat constant temperature, using an engine thermostat. Coolant flow rate through the cabin heater core varies as the engine speed changes. EREVs (Extended Range Electric Vehicles) & PHEVs (Plug-In Hybrid Electric Vehicles) have two key vehicle requirements: maximize EV (Electric Vehicle) range and maximize fuel economy when the engine is operating. In EV mode, there is no engine heat rejection and battery pack energy is consumed in order to provide heat to the passenger compartment, for windshield defrost/defog and occupant comfort. Energy consumption for cabin heating must be optimized, if one is to optimize vehicle EV range.
Technical Paper

Conducting Tire-Coupled (4-Post) Durability Simulations without Road Load Data Acquisition

2011-04-12
2011-01-0225
For decades, the industry standard for laboratory durability simulations has been based on reproducing quantified vehicle responses. That is, build a running vehicle, measure its responses over a variety of durability road surfaces and reproduce those responses in the laboratory for durability evaluation. To bring a vehicle to market quickly, the time between tightening the last bolt on a prototype test vehicle and starting the durability evaluation test must be minimized. A method to derive 4-Post simulator displacements without measuring or predicting vehicle responses is presented.
Technical Paper

Consumer Sensitivity to Vehicle Interior Component Adjustments

2012-04-16
2012-01-0075
The number of adjustable vehicle interior components features is growing. For example, the number of adjustable components of a vehicle seat has been growing from 4-way to as many as 22-way. The presented study aims to develop understanding on how sensitive drivers and front passengers are to individual component adjustment of vehicle interior features. This understanding could provide insights on which adjustable vehicle interior components features are more important to be precisely adjusted. A commercially available full-size sedan, equipped with a 4-way adjustable steering column & wheel and an 8-way adjustable seat for drivers, and an 8-way adjustable seat for front passengers, was used in this study. A total of 29 and 30 consumers were participating in this study to adjust components to their comfort on driver and front passenger sides, respectively.
Technical Paper

Determining Most Energy Efficient Cooling Control Strategy of a Rechargeable Energy Storage System

2011-04-12
2011-01-0893
Plug in hybrid electric vehicles (PHEV) and electric vehicles (EV) are using large lithium ion battery packs to store energy for powering electric traction motors. These batteries, or Rechargeable Energy Storage Systems (RESS), have a narrow temperature operating range and require thermal management systems to properly condition the batteries for use in automotive applications. This paper will focus on energy optimization of a RESS cooling system. The battery thermal management system for the General Motors Chevrolet Volt has three distinct modes for battery cooling: active cooling, passive cooling, and bypass. Testing was conducted on each individual thermal cooling mode to optimize, through control models, the energy efficiency of the system with the goal of maximizing electric vehicle range.
Technical Paper

Door Check Load Durability - Fatigue Life Prediction

2011-04-12
2011-01-0790
This paper describes an analytical methodology for predicting the fatigue life of a door system for check load durability cycles. A check stop load durability cycle occurs when a customer opens the door beyond the door detent position with a force applied on the check link or hinge check stops. This method combines Finite Element Analysis (FEA) model and fatigue code to compute the durability requirements. The FEA model consists of Door-in-White (DIW) on body with integrated hinge check link or independent check link. Nonlinear material, geometric and parts contact were considered for the door with body-in-white (BIW). Several door hinge designs, with integrated and independent check links, were investigated. Using the Von Mises stress and plastic strain from the above analysis, the fatigue life was predicted and compared with the test data. Integrating FEA and fatigue allows predicting the threshold total strain value, which is developed, for check load durability requirements.
Journal Article

Driver Acceptance and Use of a Speed Limit and Curve Advisor

2011-04-12
2011-01-0550
This research examined driver acceptance and behavior associated with Speed Limit and Curve Advisor systems, including influences on speed choice. Drivers experienced messages from an emulated Speed Limit and Curve Advisor system during a 2-hour public road drive. Driver tolerance for system errors and message conflicts was also studied by manipulating the accuracy of the information provided by the system. Messages were presented using either a Head-Up Display or on an in-dash Driver Information Center. Results indicate that drivers liked having speed limit information continuously available to them while driving, but the information provided by the Speed Limit Advisor did not significantly influence or alter drivers' speed choice or deceleration profiles in comparison to driving without the system.
Journal Article

Energy Efficient HVAC System with Spot Cooling in an Automobile - Design and CFD Analysis

2012-04-16
2012-01-0641
Spot, or distributed, cooling and heating is an energy efficient way of delivering comfort to an occupant in the car. This paper describes an approach to distributed cooling in the vehicle. A two passenger CFD model of an SUV cabin was developed to obtain the solar and convective thermal loads on the vehicle, characterize the interior thermal environment and accurately evaluate the fluid-thermal environment around the occupants. The present paper focuses on the design and CFD analysis of the energy efficient HVAC system with spot cooling. The CFD model was validated with wind tunnel data for its overall accuracy. A baseline system with conventional HVAC air was first analyzed at mid and high ambient conditions. The airflow and cooling delivered to the driver and the passenger was calculated. Subsequently, spot cooling was analyzed in conjunction with a much lower conventional HVAC airflow.
Journal Article

Evaluation of Prog-Die Wear Properties on Bare DP1180 Steel

2017-03-28
2017-01-0310
The die wear up to 80,800 hits on a prog-die setup for bare DP1180 steel was investigated in real production condition. In total, 31 die inserts with the combination of 11 die materials and 9 coatings were evaluated. The analytical results of die service life for each insert were provided by examining the evolution of surface wear on inserts and formed parts. The moments of appearance of die defects, propagation of die defects, and catastrophic failure were determined. Moreover, the surface roughness of the formed parts for each die insert was characterized using Wyko NT110 machine. The objectives of the current study are to evaluate the die durability of various tooling materials and coatings for flange operations on bare DP 1180 steel and update OEM tooling standards based on the experimental results. The current study provides the guidance for the die material and coating selections in large volume production for next generation AHSSs.
Technical Paper

Experimental Investigation of Fuel Film Characteristics of Ethanol Impinging Spray at Ultra-Low Temperature

2017-03-28
2017-01-0851
Increasing the injection pressure in DISI engine is an efficient way to obtain finer droplets but it will also potentially cause spray impingement on the cylinder wall and piston. Consequently, the fuel film sticking on the wall can dramatically increase the soot emission of the engine especially in a cold start condition. On the other hand, ethanol is widely used as an alternative fuel in DI engine due to its sustainable nature and high octane number. In this study, the fuel film characteristics of single-plume ethanol impinging spray was investigated. The experiments were performed under ultra-low fuel/plate temperature to simulate the cold start condition in cold areas. A low temperature thermostatic bath combined with specially designed heat exchangers were used to achieve ultra-low temperature for both the impinging plate and the fuel. Laser induced fluorescence (LIF) technique was employed to measure the thickness of fuel film deposited on the impinging plate.
Journal Article

Fatigue Behavior and Life Prediction for Aluminum Castings in the Absence of Casting Flaws

2011-04-12
2011-01-0193
Cast aluminum alloys are increasingly used in cyclically loaded automotive structural applications for light weight and fuel economy. The fatigue resistance of aluminum castings strongly depends upon the presence of casting flaws and characteristics of microstructural constituents. The existence of casting flaws significantly reduces fatigue crack initiation life. In the absence of casting flaws, however, crack initiation occurs at the fatigue-sensitive microstructural constituents. Cracking and debonding of large silicon (Si) and Fe-rich intermetallic particles and crystallographic shearing from persistent slip bands in the aluminum matrix play an important role in crack initiation. This paper presents fatigue life models for aluminum castings free of casting flaws, which complement the fatigue life models for aluminum castings containing casting flaws published in [1].
Technical Paper

Ferritic Nitrocarburized Brake Rotors

2011-04-12
2011-01-0567
Ferritic Nitrocarburized (FNC) cast iron brake rotors are proposed as a means to improve corrosion resistance, improve brake lining wear, as well as reduce corrosion-induced pulsation of automotive brake rotors. FNC processing of finish machined brake rotors presents challenges with controlling distortion, i.e., lateral run out (LRO). Prior investigations of FNC brake rotors suggested grinding the rotors to correct distortion. Post grinding the FNC processed rotors may reduce the FNC layer with an accompanying reduction in performance. Stress relieving (SR) the casting prior to FNC was found beneficial in providing a dimensionally acceptable rotor. Dimensional analysis of the stress relieved and FNC processed rotors will be presented. Benefits of FNC processed rotors will be reviewed.
Technical Paper

GM Approach to Chassis Based Load Management

2011-04-12
2011-01-0024
Global programs are placing demands on vehicle platforms to achieve structural durability robustness across a broader spectrum of vehicle configurations and use conditions. This robustness is optimally achieved by (a) localizing energy absorption to lower cost components, and (b) narrowing the spread in loads generated during durability events, which in turn minimizes the cost and mass impact to the vehicle platform. A generalized philosophy for conducting load optimization and for improving energy management for various types of events is presented here. Various techniques that have been employed at GM are explained by way of illustration.
Technical Paper

Hood Slam Process Automator

2011-04-12
2011-01-1066
This paper deals with the development of a Hood Slam Process Automator (PA) to automate the pre-processing tasks of the virtual slam assessment with non-linear Nastran Transient Sol. 129 on all types of hoods. The slam analysis generally consumes a lot of analyst's time for building the slam models, typically six hours and is very tedious and has the potential for errors. The Hood Slam PA will automatically create and perform slam analysis pre-processing tasks within HyperMesh software such as creating latch striker interface, creating seals and bumpers with CBUSH1D elements, assigning transient slam speed to the hood and will finally generate the Nastran non-linear transient (Sol.129) hood slam analysis input files. The ready to run analysis input files will be submitted to the Nastran solver and the analysis results will then be post processed using HyperView software.
Technical Paper

Interpretation of SAE J1100 Cargo Volume Indices

2011-04-12
2011-01-0779
SAE J1100 - Motor Vehicle Dimensions was first published in September 1973. One of the many significant aspects of this recommended practice is that it provides procedures for estimating cargo/luggage volume in various types of vehicles. Passenger vehicles typically carry cargo in one of two areas: those that are separate from the passenger compartment and those that are open to the passenger compartment. A closed compartment is: An area intended to carry or stow luggage or cargo for personal or commercial purposes that is distinct or enclosed from the area used to transport people. The volume of this area is quantified by a physical stack of simulated luggage pieces, and include the following body types: coupes, sedans, and convertibles. An open compartment is: An area intended to carry or transport luggage or cargo for personal or commercial purposes that is open to the passenger compartment. These areas have the potential to carry people or cargo.
Technical Paper

Lightweight MacPherson Strut Suspension Front Lower Control Arm Design Development

2011-04-12
2011-01-0562
The paper will discuss the results of a study to develop lightweight steel proof-of-concept front lower control arm (FLCA) designs that are less expensive and achieve equivalent structural performance relative to a baseline forged aluminum FLCA assembly. A current production forged aluminum OEM sedan FLCA assembly was selected as an aggressive mass target based on competitive benchmarking of vehicles of its size. CAE structural optimization methods were used to determine the initial candidate sheet steel and forged designs. Two (2) sheet steel FLCA designs and one (1) forged steel FLCA design were selected and developed to meet specified performance criteria. An iterative optimization strategy was used to minimize the mass of each design while meeting the specified stiffness, durability, extreme load, and longitudinal buckling strength requirements.
Technical Paper

Lubricant Flow and Temperature Prediction in a Planetary Gearset

2011-04-12
2011-01-1235
This study introduces a method to examine the flow path of the lubricant inside a planetary gearset of an automatic transmission. A typical planetary gearbox has several load bearing elements which are in relative sliding motion to each other which causes heat to be released. The major sources of friction as well as heat are the meshing teeth between gears (sun/planet, planet/ring), thrust washers, thrust bearings and needle bearings. The lubricant performs the vital function of both lubricating these sliding interfaces and cooling these sources of heat, thereby preventing failure of the gearbox. The exact flow path that the lubricant takes inside a planetary gearset is unknown. Since the gearset is primarily splash lubricated, it is also not known how much lubricant reaches critical areas. A method is developed using computational fluid dynamic techniques to enable comprehensive flow and thermal analysis and visualization of an automatic transmission assembly.
X