Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparison New Car Assessment Program NCAP Requirements and Procedures Around the World

2013-10-07
2013-36-0499
The New Car Assessment Program (NCAP), introduced in 1979 by the U.S. National Highway Traffic Safety Administration, is a vehicle safety rating system that conducts crash test and provides motoring consumers with an assessment of the safety performance of new cars. Similar programs were then developed around the world, initially for Europe (EuroNCAP), Australia (ANCAP), Japan (JNCAP), China (CNCAP) and Korea (KNCAP). NCAP most recently reached Latin America (LatinNCAP) and Southeast Asia (AseanNCAP). Although the roots are similar, many NCAP programs have significant differences on the test procedures and rating schemes. This paper is a comparative analysis of the recent NCAP protocols to highlight the most important technical differences.
Journal Article

A Comparison of Spray-Guided Stratified-Charge Combustion Performance with Outwardly-Opening Piezo and Multi-Hole Solenoid Injectors

2011-04-12
2011-01-1217
This investigation was aimed at measuring the relative performance of two spray-guided, single-cylinder, spark-ignited direct-injected (SIDI) engine combustion system designs. The first utilizes an outwardly-opening poppet, piezo-actuated injector, and the second a conventional, solenoid operated, inwardly-opening multi-hole injector. The single-cylinder engine tests were limited to steady state, warmed-up conditions. The comparison showed that these two spray-guided combustion systems with two very different sprays had surprisingly close results and only differed in some details. Combustion stability and smoke emissions of the systems are comparable to each other over most of the load range. Over a simulated Federal Test Procedure (FTP) cycle, the multi-hole system had 15% lower hydrocarbon and 18% lower carbon monoxide emissions.
Technical Paper

An Integrated Fuel Tank System Simulation

2011-04-12
2011-01-0792
For a system which involves a fluid medium contained inside a deformable structure, such as a liquid fuel system, a simulation which couples the structure and fluid may be required depending on the operating conditions and system performance metric of interest. Simulation methods for fluid / structure interaction (FSI) have been gradually developed by CAE engineers with the advent of increased computer power. A robust fuel system design requires carefully designed components that can withstand all loadings it may experience. This paper presents both LS-Dyna's Arbitrary Lagrange-Euler (ALE) and Abaqus' Coupled Eulerian-Lagrange (CEL) methods for predicting the structural performance of a fuel tank system and demonstrates that a fuel tank systems and their components can be numerically evaluated before the products release.
Journal Article

Analysis of Reservoir Pressure Decay, Velocity and Concentrations Fields of Natural Gas Venting from Pressurized Reservoir into the Atmosphere

2011-04-12
2011-01-0252
Compressed natural gas (CNG) currently is used as an alternative fuel for internal combustion engines in motor vehicles. This paper presents results of an analysis of leaks from a model isolated section of CNG fuel system. Discharge of CNG was modeled as vent flow of a real gas hydrocarbon mixture through an orifice from a reservoir with finite volume. Pressures typically used in CNG fuel systems result in choked flow for gas venting directly to atmosphere, producing an under-expanded, momentum-dominated, turbulent free jet with well defined velocity and concentration fields. This paper presents results of analyses of reservoir pressure decay, and vent flow and concentrations fields for CNG venting from a pressurized reservoir into the atmosphere. A combination of empirically-derived analytical relationships and detailed two-dimensional high resolution computational fluid dynamic modeling was used to determine the velocity and concentrations fields of the resulting CNG jet.
Technical Paper

Approach to Validation Plan Development for Advanced Battery Systems in Vehicle Applications

2011-04-12
2011-01-1366
As advanced battery systems become a standard choice for mainstream production vehicle portfolios, comprehensive battery system validation plans are essential to ensure that the battery performance, reliability, and durability targets are met prior to vehicle integration. (Note: Safety and Abuse testing are outside of the scope of this paper.) The validation plan for the Chevrolet Volt Rechargeable_Energy Storage System (RESS), the first lithium-ion battery pack designed and manufactured by General Motors (GM), was developed using a functional silo approach based on the battery design requirements documentation. While the Chevrolet Volt was the lead program at General Motors to use this validation plan development approach, other GM programs with different battery system mounting locations and cooling techniques are now using this method.
Technical Paper

Automotive AC System Oil Migration HFO-1234yf Vs. R134a

2011-04-12
2011-01-1173
1 As global automotive manufacturers prepare for the introduction of HFO-1234yf as the low Global Warming Potential (GWP) refrigerant solution in Europe and North America concerns over compressor durability due to oil migration still remain. This preliminary study evaluates several different variables that affect oil migration. Several compressor suppliers each having their own unique oil formulation for HFO-1234yf were included. Comparisons between vehicle tests and various accelerated lab test methods are made. In R134a automotive system the thresholds that cause compressor warranty are well understood. This study will compare AC systems running with HFO-1234yf at the same time identical systems with R134a are run to understand the relative effect of HFO-1234yf versus R134a.
Technical Paper

Developing the AC17 Efficiency Test for Mobile Air Conditioners

2013-04-08
2013-01-0569
Chrysler, Ford, General Motors, the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) have collaborated over the past two years to develop an efficiency test for mobile air conditioner (MAC) systems. Because the effect of efficiency differences between different MAC systems and different technologies is relatively small compared to overall vehicle fuel consumption, quantifying these differences has been challenging. The objective of this program was to develop a single dynamic test procedure that is capable of discerning small efficiency differences, and is generally representative of mobile air conditioner usage in the United States. The test was designed to be conducted in existing test facilities, using existing equipment, and within a sufficiently short time to fit standard test facility scheduling. Representative ambient climate conditions for the U.S. were chosen, as well as other test parameters, and a solar load was included.
Technical Paper

Development of a Standard Spin Loss Test Procedure for 4WD Transfer Cases

2012-04-16
2012-01-0306
As vehicle fuel economy continues to grow in importance, the ability to accurately measure the level of parasitic losses on all driveline components is required. A standardized comparison procedure enables manufacturers and suppliers to measure component losses consistently, in addition to offering a reliable process to assess enablers for efficiency improvements. This paper reviews the development of a comprehensive test procedure to measure transfer case speed-dependent parasitic losses at key speed, load, and environmental conditions. This procedure was validated for repeatability considering variations in soak time, temperature measurement positions on the transfer case, and test operating conditions. Additional assessments of spin loss at low ambient temperatures, and the effect of component break-in on spin loss were also conducted.
Journal Article

Development of a Standard Spin Loss Test Procedure for FWD-Based Power Transfer Units

2013-04-08
2013-01-0361
As vehicle fuel economy continues to grow in importance, the ability to accurately measure the level of efficiency on all driveline components is required. A standardized test procedure enables manufacturers and suppliers to measure component losses consistently and provides data to make comparisons. In addition, the procedure offers a reliable process to assess enablers for efficiency improvements. Previous published studies have outlined the development of a comprehensive test procedure to measure transfer case speed-dependent parasitic losses at key speed, load, and environmental conditions. This paper will take the same basic approach for the Power Transfer Units (PTUs) used on Front Wheel Drive (FWD) based All Wheel Drive (AWD) vehicles. Factors included in the assessment include single and multi-stage PTUs, fluid levels, break-in process, and temperature effects.
Technical Paper

Development of the Combustion System for the General Motors Fifth Generation “Small Block” Engine Family

2013-04-08
2013-01-1732
The fifth generation of General Motor's “Small Block” 90-degree V engine family has been developed with a totally new combustion system. This system employs direct fuel injection (DI) and carefully architected in-cylinder flow field development in order to significantly improve all aspects of combustion system performance. Efficiency improvements stem from increased compression ratio, greatly improved dilution tolerance, and excellent knock resistance. The asymmetric, 2-valve (2V) layout of the “Small Block” engine presented unique challenges in developing the combustion system, but also offered unusual opportunities for an elegant solution while retaining the traditional “Small Block” attributes of packaging efficiency and power density.
Technical Paper

Effectiveness of Cold Soak Filtration Test to Predict Precipitate Formation in Biodiesel

2011-04-12
2011-01-1201
Biodiesel use is increasing around the world. Vehicle failures due to filter clogging issues have been reported in the field with use of biodiesel blended fuels in winter months. In certain instances, filter clogging was caused by precipitate formation above the cloud point of the fuel. Minor contaminants in biodiesel such as sterol glucosides and saturated monoglycerides are suspected to cause precipitation above the cloud point. ASTM has added a requirement to test biodiesel fuel for cold soak filtration test to prevent occurrences of this phenomenon of precipitation above the cloud point. This study focuses on understanding the correlation between cold soak filtration test results and presence of contaminants such as sterol glucosides and saturated monoglycerides in biodiesel fuels. Test samples were also subjected to thermal cycling at temperatures below the cloud point of fuel to co-correlate the cold soak filtration test results to visual observation of precipitate formation.
Technical Paper

Effects of Fuel Corrosion Inhibitors on Powertrain Intake Valve Deposits

2011-04-12
2011-01-0908
Corrosion inhibitors (CIs) have been used for years to protect the supply and distribution hardware used for transportation of fuel from refineries. The impact of these inhibitors on spark ignited fuel systems, specifically intake valve deposits, is known and presented in open literature. However, the relationship of the additive concentrations to the powertrain intake valve deposit performance is not understood. This paper has two purposes: to present and discuss a market place survey of corrosion inhibitors and how they vary in concentration in the final blended fuel; and, to show how the variation in the concentrations of the CIs impact the operation and performance of vehicles, specifically, the effects on intake valve deposit formation. Commercially available corrosion inhibitor packages for both gasoline and ethanol blended fuels, specifically E85 fuels, were studied for their chemical compositions, and their impact on valves for a port fuel injection (PFI) engine.
Technical Paper

Effects of Fuel Ethanol Quality on Vehicle System Components

2011-04-12
2011-01-1200
Corn ethanol has been used for fuel blending as both an oxygenate and octane booster and in most U.S. states conform to the ASTM D5798 fuel ethanol quality standard. Today the fuel ethanol market is expanding the types of feedstocks used to make ethanol and changing the processing techniques. These non-corn alternative feedstocks used to produce fuel ethanol bring new chemical components into the product that are not monitored under the D5798 standard, and it is unclear if they will result in material compatibility challenges for vehicle fuel systems that could affect performance and emissions. The vehicle contains a variety of plastic, metallic, and polymeric materials in the fuel tank, fuel pump, engine, and exhaust system that are sensitive to water, ions, acids, and high molecular weight compounds.
Journal Article

Effects of Gasoline and Ethanol Fuel Corrosion Inhibitors on Powertrain Intake Valve Deposits

2013-04-08
2013-01-0893
Corrosion inhibitors (CIs) have been used for years to protect the supply and distribution hardware used for transportation of fuel from refineries and to buffer the potential organic acids present in an ethanol blended fuel to enhance storage stability. The impact of these inhibitors on spark-ignition engine fuel systems, specifically intake valve deposits, is known and presented in open literature. However, the relationship of the corrosion inhibitors to the powertrain intake valve deposit performance is not understood. This paper has two purposes: to present and discuss a second market place survey of corrosion inhibitors and how they vary in concentration in the final blended fuel, specifically E85 (Ethanol Fuel Blends); and, to show how the variation in the concentrations of the components of the CIs impacts the operation and performance of vehicles, specifically, the effects on intake valve deposit formation.
Journal Article

Engine Diagnostics Using Acoustic Emissions Sensors

2016-04-05
2016-01-0639
Engine acoustics measured by microphones near the engine have been used in controlled laboratory settings for combustion feedback and even combustion phasing control, but the use of these techniques in a vehicle where many other noise sources exist is problematic. In this study, surface-mounted acoustic emissions sensors are embedded in the block of a 2.0L turbocharged GDI engine, and the signal is analyzed to identify useful feedback features. The use of acoustic emissions sensors, which have a very high frequency response and are commonly used for detecting material failures for health monitoring, including detecting gear pitting and ring scuffing on test stands, enables detection of acoustics both within the range of human hearing and in the ultrasonic spectrum. The high-speed acoustic time-domain data are synchronized with the crank-angle-domain combustion data to investigate the acoustic emissions response caused by various engine events.
Journal Article

Evaluation of Dynamic Roof Deformation in Rollover Crash Tests

2011-04-12
2011-01-1093
Although the measured amount of roof deformation associated with a given rollover crash test is often the residual or post test deformation, rollover crash test researchers are aware that roof deformation occurs dynamically throughout the rollover event with varying magnitude. The challenge to quantifying dynamic roof deformation has been the lack of a reliable method to measure and record the dynamic roof deformation during the rollover test. Researchers have explored various methods to measure dynamic roof deformation including the use of film analysis of external targets, accelerometers, string potentiometers, and 3D photogrammetry. This paper discusses a series of simulated curb trip rollover tests conducted to study and compare different methodologies to measure and record dynamic roof deformation.
Journal Article

FMVSS126 Electronic Stability Control Sine With Dwell Incomplete Vehicle Type 2 Analysis

2011-04-12
2011-01-0956
Incomplete vehicles are partially manufactured by an Original Equipment Manufacturer (OEM) and subsequently sold to and completed by a final-stage manufacturer. Section S8.8, Final-Stage Manufacturers and Alterers, of Federal Motor Vehicle Safety Standard (FMVSS) 126 states “Vehicle that are manufactured in two or more stages or that are altered (within the meaning of 49 CFR 567.7) after having been previously certified in accordance with Part 567 of this chapter, are not subject to the requirements of S8.1 through S8.5. Instead, all vehicles produced by these manufacturers on or after September 1, 2012, must comply with this standard.” The FMVSS 126 compliance of the completed vehicle can be certified in three ways: by the OEM provided no alterations are made to identified components (TYPE 1), conditionally by the OEM provided the final-stage manufacturer follows specific guidelines (TYPE 2), or by the final-stage manufacturer (TYPE 3).
Technical Paper

Fuel Effects on Combustion and Emissions of a Direct-Injection Diesel Engine Operating at Moderate to High Engine Speed and Load

2012-04-16
2012-01-0863
It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. Data are examined from a direct-injection single-cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR.
Technical Paper

Ignition and Combustion Simulations of Spray-Guided SIDI Engine using Arrhenius Combustion with Spark-Energy Deposition Model

2012-04-16
2012-01-0147
An Arrhenius combustion model (chemically controlled model) with a spark-energy deposition model having a moving spherical ignition source in the Converge CFD code is validated with a single-cylinder spray-guided SIDI engine at idle-like lean-burn operating conditions with both single- and double-pulse fuel injection. It was found that a fine mesh is required for accurate solving of "laminar-flame" like reaction front propagation. A reduced chemistry mechanism for iso-octane is used as gasoline surrogate. The effects of spark advance were studied by the simulation and experiment. The results show that this modeling approach can provide reasonable predictions for the spray-guided SIDI engine with single- and double-pulse injections.
Technical Paper

Investigation of Diesel Injector Nozzle Flow Number Impact on Spray Formation and Combustion Evolution by Optical Diagnostics

2012-04-16
2012-01-0701
The present paper describes an experimental investigation over the impact of diesel injector nozzle flow number on spray formation and combustion evolution for a modern EURO5 light-duty diesel engine. The analysis has been carried out by coupling the investigations in non evaporative spray bomb to tests in optical single cylinder engine in firing conditions. The research activity, which is the result of a collaborative project between Istituto Motori Napoli - CNR and GM Powertrain Europe, is devoted to understanding the basic operating behaviour of low flow number nozzles which are showing promising improvements in diesel engine behaviour at partial load. In fact, because of the compelling need to push further emission, efficiency, combustion noise and power density capabilities of the last-generation diesel engines, the combination of high injection pressure fuel pumps and low flow number nozzles is general trend among major OEMs.
X