Refine Your Search

Topic

Author

Search Results

Journal Article

A Comparison of Spray-Guided Stratified-Charge Combustion Performance with Outwardly-Opening Piezo and Multi-Hole Solenoid Injectors

2011-04-12
2011-01-1217
This investigation was aimed at measuring the relative performance of two spray-guided, single-cylinder, spark-ignited direct-injected (SIDI) engine combustion system designs. The first utilizes an outwardly-opening poppet, piezo-actuated injector, and the second a conventional, solenoid operated, inwardly-opening multi-hole injector. The single-cylinder engine tests were limited to steady state, warmed-up conditions. The comparison showed that these two spray-guided combustion systems with two very different sprays had surprisingly close results and only differed in some details. Combustion stability and smoke emissions of the systems are comparable to each other over most of the load range. Over a simulated Federal Test Procedure (FTP) cycle, the multi-hole system had 15% lower hydrocarbon and 18% lower carbon monoxide emissions.
Journal Article

Adjoint Method for Aerodynamic Shape Improvement in Comparison with Surface Pressure Gradient Method

2011-04-12
2011-01-0151
Understanding the flow characteristics and, especially, how the aerodynamic forces are influenced by the changes in the vehicle body shape, are very important in order to improve vehicle aerodynamics. One specific goal of aerodynamic shape optimization is to predict the local shape sensitivities for aerodynamic forces. The availability of a reliable and efficient sensitivity analysis method will help to reduce the number of design iterations and the aerodynamic development costs. Among various shape optimization methods, the Adjoint Method has received much attention as an efficient sensitivity analysis method for aerodynamic shape optimization because it allows the computation of sensitivity information for a large number of shape parameters simultaneously.
Technical Paper

An Investigation of Diesel EGR Cooler Fouling and Effectiveness Recovery

2013-04-08
2013-01-0533
Diesel engine developers are continually striving to reduce harmful NOx emissions through various calibration and hardware strategies. One strategy being implemented in production Diesel engines involves utilizing cooled exhaust gas recirculation (EGR). Although there is a significant NOx reduction potential by utilizing cooled EGR, there are also several issues associated with it, such as EGR cooler fouling and a reduction in cooler effectiveness that can occur over time. The exact cause of these issues and many others related to cooler fouling are not clearly understood. One such unanswered issue or phenomenon that has been observed in both field tested and lab tested EGR coolers is that of a recovery in EGR cooler effectiveness after a shutdown or after cycling between various conditions.
Technical Paper

Analysis of Diesel Injector Nozzle Flow Number Impact on Emissions and Performance of a Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0891
The present paper describes the results of a research project aimed at studying the impact of nozzle flow number on a Euro5 automotive diesel engine, featuring Closed-Loop Combustion Control. In order to optimize the trade-offs between fuel economy, combustion noise, emissions and power density for the next generation diesel engines, general trend among OEMs is lowering nozzle flow number and, as a consequence, nozzle hole size. In this context, three nozzle configurations have been characterized on a 2.0L Euro5 Common Rail Diesel engine, coupling experimental activities performed on multi-cylinder and optical single cylinder engines to analysis on spray bomb and injector test rigs. More in detail, this paper deeply describes the investigation carried out on the multi-cylinder engine, specifically devoted to the combustion evolution and engine performance analysis, varying the injector flow number.
Technical Paper

Analytical Evaluation of Propulsion System Architectures for Future Urban Vehicles

2011-04-12
2011-01-0861
Today, nearly half of the world population lives in urban areas. As the world population continues to migrate to urban areas for increased economic opportunities, addressing personal mobility challenges such as air pollution, Greenhouse Gases (GHGs) and traffic congestion in these regions will become even a greater challenge especially in rapidly growing nations. Road transportation is a major source of air pollution in urban areas causing numerous health concerns. Improvements in automobile technology over the past several decades have resulted in reducing conventional vehicle tailpipe emissions to exceptionally low levels. This transformation has been attained mainly through advancements in engine and transmission technologies and through partial electrification of vehicles. However, the technological advancements made so far alone will not be able to mitigate the issues due to increasing GHGs and air pollution in urban areas.
Technical Paper

Automotive AC System Oil Migration HFO-1234yf Vs. R134a

2011-04-12
2011-01-1173
1 As global automotive manufacturers prepare for the introduction of HFO-1234yf as the low Global Warming Potential (GWP) refrigerant solution in Europe and North America concerns over compressor durability due to oil migration still remain. This preliminary study evaluates several different variables that affect oil migration. Several compressor suppliers each having their own unique oil formulation for HFO-1234yf were included. Comparisons between vehicle tests and various accelerated lab test methods are made. In R134a automotive system the thresholds that cause compressor warranty are well understood. This study will compare AC systems running with HFO-1234yf at the same time identical systems with R134a are run to understand the relative effect of HFO-1234yf versus R134a.
Technical Paper

Balance of Electrical Power Requirements through Smart Electric Power Management

2011-04-12
2011-01-0042
This paper examines Smart Electric Power Management as it pertains to when the vehicle charging system is active. Over the past decade there have been several factors at play which have stressed the demands placed upon the vehicle electrical power system. Many of these factors present challenges to electrical power that are at cross-purposes with one another. For example, demands of new and existing electrical loads, customer expectations about load performance and battery life, and the push by governments' world-wide for increased fuel economy (FE) and reduced CO2 emissions all have direct impact and can be directly impacted by decisions made in electric power design. As the electrification of the vehicle has progressed we now have much more specific vehicle state data available and the means to share this information among on-board computers through serial data link connectivity.
Journal Article

Calculation of Heating Value for Diesel Fuels Containing Biodiesel

2013-04-08
2013-01-1139
Biodiesel, a fuel comprised of mono-alkyl esters of long-chain fatty acids also known as Fatty Acid Methyl Esters(FAME), derived from vegetable oils or animal fats, has become an important commercial marketplace automotive fuel in the United States (US) and around the world over last few years. FAME biodiesels have many chemical and physical property differences compared to conventional petroleum based diesel fuels. Also, the properties of biodiesel vary based on the feedstock chosen for biodiesel production. One of the key differences between petroleum diesel fuels and biodiesel is the energy content. The energy content, or heating value, is an important property of motor fuel, since it directly affects the vehicle fuel economy. While the energy content can be measured by combustion of the fuel in a bomb calorimeter, this analytical laboratory testing is time consuming and expensive.
Technical Paper

Cellulosic Ethanol Fuel Quality Evaluation and its Effects on PFI Intake Valve Deposits and GDI Fuel Injector Plugging Performance

2013-04-08
2013-01-0885
The U.S. Renewable Fuel Standard 2 (RFS2) mandates the use of advanced renewable fuels such as cellulosic ethanol to be blended into gasoline in the near future. As such, determining the impact of these new fuel blends on vehicle performance is important. Therefore, General Motors conducted engine dynamometer evaluations on the impact of cellulosic ethanol blends on port fuel injected (PFI) intake valve deposits and gasoline direct injected (GDI) fuel injector plugging. Chemical analysis of the test fuels was also conducted and presented to support the interpretation of the engine results. The chemical analyses included an evaluation of the specified fuel parameters listed in ASTM International's D4806 denatured fuel ethanol specification as well as GC/MS hydrocarbon speciations to help identify any trace level contaminant species from the new ethanol production processes.
Journal Article

Co-Simulation of Multiple Software Packages for Model Based Control Development and Full Vehicle System Evaluation

2012-04-16
2012-01-0951
Recent advancements in simulation software and computational hardware make it realizable to simulate a full vehicle system comprised of multiple sub-models developed in different modeling languages. The so-called, co-simulation allows one to develop a control strategy and evaluate various aspects of a vehicle system, such as fuel efficiency and vehicle drivability, in a cost-effective manner. In order to study the feasibility of the synchronized parallel processing in co-simulation this paper presents two co-simulation frameworks for a complete vehicle system with multiple heterogeneous subsystem models. In the first approach, subsystem models are co-simulated in a serial configuration, and the same sub-models are co-simulated in a parallel configuration in the second approach.
Technical Paper

Comparisons of Current Concepts for Press Hardened Steel Tailor Welded Blanks and Tailor Rolled Blanks on Center Pillar Reinforcements

2011-04-12
2011-01-1059
Press hardened steels (PHS) are commonly used in automotive structural applications because of their combination of extremely high strength, load carrying capacity and the ability to form complex shapes in the press hardening process. Recent adoption of increased roof crush standards, side impact requirements and the increased focus on CO2 emissions and mass reduction have led autmotive manufacturers to significantly increase the amount of PHS being designed into future vehicle designs. As a way to further optimize the use of these steels, multi-gauge welded blanks of PHS and multi-material blanks of PHS to microalloyed steels of various thickness have been developed to help achieve these requirements. More recently, tailor rolled PHS, whereby the steel is rolled such that the thickness changes across the width of the sheet, have been developed.
Technical Paper

Conditional Analysis of Enhanced Combustion Luminosity Imaging in a Spray-Guided Gasoline Engine with High Residual Fraction

2011-04-12
2011-01-1281
High-speed (12 kHz) imaging of combustion luminosity (enhanced by using a sodium fuel additive) has been analyzed and compared to crank angle resolved heat release rates and mass fraction burn profiles in a spray-guided spark-ignited direct-injection (SG-SIDI) optical single-cylinder engine. The addition of a sodium-containing additive to gasoline greatly increases the combustion luminosity, which allows unintensified high-speed (12 kHz) imaging of early partially premixed flame kernel growth and overall flame propagation with excellent signal-to-noise ratio for hundreds of consecutive engine cycles. Ignition and early flame kernel growth are known to be key to understanding and eliminating poor burn cycles in SG-SIDI engines.
Technical Paper

Conducting Tire-Coupled (4-Post) Durability Simulations without Road Load Data Acquisition

2011-04-12
2011-01-0225
For decades, the industry standard for laboratory durability simulations has been based on reproducing quantified vehicle responses. That is, build a running vehicle, measure its responses over a variety of durability road surfaces and reproduce those responses in the laboratory for durability evaluation. To bring a vehicle to market quickly, the time between tightening the last bolt on a prototype test vehicle and starting the durability evaluation test must be minimized. A method to derive 4-Post simulator displacements without measuring or predicting vehicle responses is presented.
Journal Article

Design of Engine-Out Virtual NOx Sensor Using Neural Networks and Dynamic System Identification

2011-04-12
2011-01-0694
Fuel economy improvement and stringent emission regulations worldwide require advanced air charging and combustion technologies, such as low temperature combustion, PCCI or HCCI combustion. Furthermore, NOx aftertreatment systems, like Selective Catalyst Reduction (SCR) or lean NOx trap (LNT), are needed to reduce vehicle tailpipe emissions. The information on engine-out NOx emissions is essential for engine combustion optimization, for engine and aftertreatment system development, especially for those involving combustion optimization, system integration, control strategies, and for on-board diagnosis (OBD). A physical NOx sensor involves additional cost and requires on-board diagnostic algorithms to monitor the performance of the NOx sensor.
Technical Paper

Design, Analysis, and Development Testing of Large Hood Plastic Mounted Trim Components

2011-04-12
2011-01-0490
Large hood mounted plastic trim components are subjected to complex and often extreme loading conditions. Typical loading conditions include solar and thermal cycling, as well as road and powertrain induced vibrations, aero lift and buffeting, and mechanical loads such as car wash. For the above components understanding and classifying the typical loading conditions is an essential and important step in achieving long term quality. This paper discusses different approaches to the design, analysis, development, and testing of plastic trim components. Samples of analysis and test results are presented to demonstrate how to identify and prevent the loss of the part function. Some useful guidelines and practices for addressing thermal expansion, dimensional variation, and redundancy in attachments are also discussed.
Technical Paper

Detection of Urea Injection System Faults for SCR Systems

2012-04-16
2012-01-0431
The urea injection is a key function in Urea-SCR NOx reduction system. As the tailpipe NOx emission standard becomes increasingly stringent, it is critical to diagnose the injection faults in order to guarantee the SCR DeNox functionality and performance. Particularly, a blocked injector may cause under-dosing of urea thus reduced DeNox functionality. Monitoring urea injection rate is one of the efficient methods for injection fault diagnosis. However, direct measurement of the urea mass flow is not feasible due to its high cost. This paper presents methods that are promising for detecting and isolating faults in urea injection by processing certain actuator signal and existing sensory measurements, e.g., the injector Pulse Amplitude Modulated (PAM) command and the pressure of the urea delivery line. No additional dedicated sensor is required. Three methods are discussed to detect urea injection system faults.
Technical Paper

Developing the AC17 Efficiency Test for Mobile Air Conditioners

2013-04-08
2013-01-0569
Chrysler, Ford, General Motors, the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) have collaborated over the past two years to develop an efficiency test for mobile air conditioner (MAC) systems. Because the effect of efficiency differences between different MAC systems and different technologies is relatively small compared to overall vehicle fuel consumption, quantifying these differences has been challenging. The objective of this program was to develop a single dynamic test procedure that is capable of discerning small efficiency differences, and is generally representative of mobile air conditioner usage in the United States. The test was designed to be conducted in existing test facilities, using existing equipment, and within a sufficiently short time to fit standard test facility scheduling. Representative ambient climate conditions for the U.S. were chosen, as well as other test parameters, and a solar load was included.
Journal Article

Development of the Combustion System for General Motors' High-Efficiency Range Extender Ecotec Small Gas Engine

2015-04-14
2015-01-1272
General Motors has developed an all-new Ecotec 1.5 L range extender engine for use in the 2016 next generation Voltec propulsion system. This engine is part of a new Ecotec family of small displacement gasoline engines introduced in the 2015 model year. Major enhancements over the range extender engine in the current generation Voltec propulsion system include the adoption of direct injection (DI), cooled external exhaust gas recirculation (EGR), and a high 12.5:1 geometric compression ratio (CR). Additional enhancements include the adoption of high-authority phasers on both the intake and exhaust camshafts, and an integrated exhaust manifold (IEM). The combination of DI with cooled EGR has enabled significant thermal efficiency gains over the 1.4 L range extender engine in the current generation Voltec propulsion system at high engine loads.
Technical Paper

Door Check Load Durability - Fatigue Life Prediction

2011-04-12
2011-01-0790
This paper describes an analytical methodology for predicting the fatigue life of a door system for check load durability cycles. A check stop load durability cycle occurs when a customer opens the door beyond the door detent position with a force applied on the check link or hinge check stops. This method combines Finite Element Analysis (FEA) model and fatigue code to compute the durability requirements. The FEA model consists of Door-in-White (DIW) on body with integrated hinge check link or independent check link. Nonlinear material, geometric and parts contact were considered for the door with body-in-white (BIW). Several door hinge designs, with integrated and independent check links, were investigated. Using the Von Mises stress and plastic strain from the above analysis, the fatigue life was predicted and compared with the test data. Integrating FEA and fatigue allows predicting the threshold total strain value, which is developed, for check load durability requirements.
Technical Paper

Dual Rate Jounce Bumper Design

2011-04-12
2011-01-0791
Jounce bumpers are the primary component by which vertical wheel travel is limited in our suspensions. Typically, the jounce bumper is composed of closed or open cell urethane material, which has relatively low stiffness at initial compression with highly progressive stiffness at full compression. Due to this highly progressive stiffness at high load, peak loads are extremely sensitive to changes in input energy (affected by road surface, tire size, tire pressure, etc.) A “Dual Rate Jounce Bumper” concept is described that reduces this sensitivity. Additionally, various mechanizations of the concept are described as well as the specific program benefits, where applicable.
X