Refine Your Search




Search Results

Technical Paper

2005 Ford GT Magnesium I/P Structure

This paper describes a new concept for a Ford GT instrument panel (IP) based on structural magnesium components, which resulted in what may be the industry's first structural IP (primary load path). Two US-patent applications are ongoing. Design criteria included cost, corrosion protection, crashworthiness assessments, noise vibration harshness (NVH) performance, and durability. Die casting requirements included feasibility for production, coating strategy and assembly constraints. The magnesium die-cast crosscar beam, radio box and console top help meet the vehicle weight target. The casting components use an AM60 alloy that has the necessary elongation properties required for crashworthiness. The resulting IP design has many unique features and the flexibility present in die-casting that would not be possible using conventional steel stampings and assembly techniques.
Technical Paper

2005 Fuel Cell Vehicle and its Magnesium Power Distribution Unit

The High Voltage Power Distribution Unit (PDU) is constructed of magnesium in support of Fuel Cell Electric Vehicle (FCEV) weight reduction efforts. The PDU distributes and controls a nominal 75 kilowatts of power generated by the Fuel Cell, the primary source of High Voltage power, to all the vehicle loads and accessories. The constraints imposed on the design of the PDU resulted in a component highly susceptible to general and galvanic corrosion. Corrosion abatement was the focus of the PDU redesign. This paper describes the redesign efforts undertaken by Ford personnel to improve the part robustness and corrosion resistance.
Technical Paper

A Comparative Investigation on the High Temperature Fatigue of Three Cast Aluminum Alloys

The high temperature fatigue behaviors of three cast aluminum alloys used for cylinder head fabrication - 319, A356 and AS7GU - are compared under isothermal fatigue at room temperature and elevated temperatures. The thermo-mechanical fatigue behavior for both out-of-phase and in-phase loading conditions (100-300°C) has also been investigated. It has been observed that all three of these alloys present a very similar behavior under both isothermal and thermo-mechanical low-cycle fatigue. Under high-cycle fatigue, however, the alloys A356 and AS7GU exhibit superior performance.
Technical Paper

A Comparative Study of Automotive System Fatigue Models Processed in the Time and Frequency Domain

The objective of this paper is to demonstrate that frequency domain methods for calculating structural response and fatigue damage can be more widely applicable than previously thought. This will be demonstrated by comparing results of time domain vs. frequency domain approaches for a series of fatigue/durability problems with increasing complexity. These problems involve both static and dynamic behavior. Also, both single input and multiple correlated inputs are considered. And most important of all, a variety of non-stationary loading types have been used. All of the example problems investigated are typically found in the automotive industry, with measured loads from the field or from the proving ground.
Technical Paper

A Framework for Reliable and Durable Product Design

In this paper, a simplified and systematic approach to integrate reliability and durability aspects in design process is presented. A six step process is explained with the help of examples. Two alternatives for gathering means and standard deviations for key parameters are discussed. First a DOE approach based on orthogonal arrays is presented. Second approach is based on Taylor Series expansion. An example of beam design is solved with both of these approaches. The Second example also considers the degradation with time in service.
Technical Paper

A Method for Rapid Durability Test Development

Designing a durability test for an automatic transmission that appropriately reflects customer usage during the lifetime of the vehicle is a formidable task; while the transmission and its components must survive severe usage, overdesigning components leads to unnecessary weight, increased fuel consumption and increased emissions. Damage to transmission components is a function of many parameters including customer driving habits and vehicle and transmission characteristics such as weight, powertrain calibration, and gear ratios. Additionally, in some cases durability tests are required to verify only a subset of the total parameter space, for example, verifying only component modifications. Lastly, the ideal durability test is designed to impose the worst case loading conditions for the maximum number of internal components, be as short as practicable to reduce testing time, with minimal variability between tests in order to optimize test equipment and personnel resources.
Technical Paper

A Post-processor for Finite Element Stress-based Fatigue Analysis

Explicit finite element simulations were conducted on an aluminum wheel model where a rotating bend moment was applied on its hub to simulate wheel cornering fatigue testing. A post-processor was developed to calculate equivalent von Mises alternating and mean stresses from stress tensor. The safety factors of fatigue design for each finite element were determined to assess the fatigue performance by utilizing the Goodman linear relationship. Elements with low safety factors were identified due to the prescribed boundary conditions and stress concentrations arising from wheel geometry.
Technical Paper

A Test Method for Quantifying Residual Stress Due to Heat Treatment in Metals

Quantification of residual stresses is an important engineering problem impacting manufacturabilty and durability of metallic components. An area of particular concern is residual stresses that can develop during heat treatment of metallic components. Many heat treatments, especially in heat treatable cast aluminum alloys, involve a water-quenching step immediately after a solution-treatment cycle. This rapid water quench has the potential to induce high residual stresses in regions of the castings that experience large thermal gradients. These stresses may be partially relaxed during the aging portion of the heat treatment. The goal of this research was to develop a test sample and quench technique to quantify the stresses created by steep thermal gradients during rapid quenching of cast aluminum. The development and relaxation of residual stresses during the aging cycle was studied experimentally with the use of strain gauges.
Technical Paper

A Thermoviscoplastic FE Model for the Strain Prediction in High Temperature, Thermal Cycling Applications for Silicon Molybdenum Nodular Cast Iron

The design of components for high temperature, thermal cycling situations has traditionally been a challenging problem because the analysis must compensate for the non-linear behavior of the material. One example for automotive applications is the exhaust manifold, where temperatures may reach 900°C during thermal cycling. Fatigue failure and excessive deformation of these components must be analyzed with thermoviscoplastic models. A Finite Element (FE) model is developed to simulate the material behavior at high temperature, thermal cycling conditions. A specimen of Silicon Molybdenum Nodular Cast Iron (4% Si, 0.8% Mo) is cycled between maximum temperatures of 500°C and 960°C while the stress is measured with respect to time. The model predictions for stress are compared to the experimental results for two rates of thermal cycling. The analysis is conducted with and without creep effects to understand its contribution to the overall strain.
Technical Paper

Accelerated Corrosion Testing of Automotive Evaporators and Condensers

There is an ongoing effort in the industry to develop an accelerated corrosion test for automotive heat exchangers. This has become even more important as automakers are focusing on corrosion durability of 15 years in the field versus current target of 10 years. To this end an acid immersion test was developed and reported in a previous paper for condensers (1). This paper extends those results to evaporators and establishes the efficacy of the test using these results and those reported in the literature. The paper also discusses variability in corrosion test results as observed in tests such as ASTM G85:A3 Acidified Synthetic Sea Water Test (SWAAT), and its relation to field durability.
Technical Paper

Aluminum Cylinder Head High Cycle Fatigue Durability Including the Effects of Manufacturing Processes

High cycle fatigue material properties are not uniformly distributed on cylinder heads due to the casting process. Virtual Aluminum Casting (VAC) tools have been developed within Ford Motor Company to simulate the effects of the manufacturing process on the mechanical properties of cast components. One of VAC features is the ability to predict the high cycle fatigue strength distribution. Residual stresses also play an important role in cylinder head high cycle fatigue, therefore they are also simulated and used in the head high cycle fatigue analysis. Cylinder head assembly, thermal and operating stresses are simulated with ABAQUS™. The operating stresses are combined with the residual stresses for high cycle fatigue calculations. FEMFAT™ is used for the high cycle fatigue analysis. A user-defined Haigh diagram is built based on the local material properties obtained from the VAC simulation.
Technical Paper

Analytical Methods for Durability in the Automotive Industry - The Engineering Process, Past, Present and Future

In the early days of the automotive industry, durability and reliability were hit or miss affairs, with end-users often being the first to know about any durability problems - and in many cases forming an essential part of the development process. More recently, automotive companies have developed proving ground and laboratory test procedures that aim to simulate typical or severe customer usage. These test procedures have been used to develop the products through a series of prototypes and to prove the durability of the product prior to release in the marketplace. Now, commercial pressures and legal requirements have led to increasing reliance on CAE methods, with fatigue life prediction having a central role in the durability engineering process.
Technical Paper

Aqueous Corrosion of Experimental Creep-Resistant Magnesium Alloys

This paper presents a comparison of aqueous corrosion rates in 5% NaCl solution for eight experimental creep-resistant magnesium alloys considered for automotive powertrain applications, as well as three reference alloys (pure magnesium, AM50B and AZ91D). The corrosion rates were measured using the techniques of titration, weight loss, hydrogen evolution, and DC polarization. The corrosion rates measured by these techniques are compared with each other as well as with those obtained with salt-spray testing using ASTM B117. The advantages and disadvantages of the various corrosion measurement techniques are discussed.
Technical Paper

Attribute Analysis and Criteria for Automotive Exhaust Systems

This paper summarizes the attributes of automotive exhaust system and provides a guideline for exhaust system design, analysis and development. The exhaust system has various attributes including vibration, acoustics or noise, durability and thermal distribution, flow and power loss, emission, in addition to its interface with vehicle. This paper describes all these attributes and the corresponding performances, and develops criteria for each of the attributes. The paper also describes the interfaces between the exhaust system and powerplant with body structure.
Technical Paper

Authenticity of FE Modeling for Fatigue Assessment of Welds in Automotive Structures

MIG (Metal Inert Gas or Gas Metal Arc welding) and spot welding are the most common way of joining steel components in automotive body, and frame structures. The main design benefits of MIG welding are however the ability to join the parts with single side access and the reduction or elimination of flanges. Different finite element based methodologies exist for predicting the durability of welds. These methodologies are being used in the automotive industry to resolve potential and current durability issues in spot and MIG welded steel components and also to reduce expensive testing practices. However, the analysis results highly depend on the finite element modeling and the accuracy of weld data. This paper briefly describes some of the lessons learned while applying the weld life prediction technology for MIG and spot welds in automotive steel structural components.
Technical Paper

Automotive AC System Oil Migration HFO-1234yf Vs. R134a

1 As global automotive manufacturers prepare for the introduction of HFO-1234yf as the low Global Warming Potential (GWP) refrigerant solution in Europe and North America concerns over compressor durability due to oil migration still remain. This preliminary study evaluates several different variables that affect oil migration. Several compressor suppliers each having their own unique oil formulation for HFO-1234yf were included. Comparisons between vehicle tests and various accelerated lab test methods are made. In R134a automotive system the thresholds that cause compressor warranty are well understood. This study will compare AC systems running with HFO-1234yf at the same time identical systems with R134a are run to understand the relative effect of HFO-1234yf versus R134a.
Technical Paper

Automotive Manufacturing Task Analysis: An Integrated Approach

Automotive manufacturing presents unique challenges for ergonomic analysis. The variety of tasks and frequencies are typically not seen in other industries. Moving these challenges into the realm of digital human modeling poses new challenges and offers the opportunity to create and enhance tools brought over from the traditional reactive approach. Chiang et al. (2006) documented an enhancement to the Siemen's Jack Static Strength Prediction tool. This paper will document further enhancements to the ErgoSolver (formerly known as the Ford Static Strength Prediction Solver).
Technical Paper

Bumper Fatigue Cracks

One thing that is very important in a carmaker company is its know-how built during all its life. Such an experience allows, for instance, to correlate the customer expected product life with accelerated tests procedures. When it comes to cars, it is usual to have correlated proving routes in such way that if a prototype can take a number of passing in the proving ground without failure, it is unlikely the car is going to fail during a regular life. In the other hand, if a failure at determined percentage of the test happens, it is predictable that the same failure shows up at the same percentage of the product design life. This paper proposes a methodology based on the SxN fatigue theory to solve durability issues observed in correlated durability tests.
Technical Paper

CAE Approach for Light Truck Frame Durability Evaluation Due to Payload Increase

The growing competition of the automotive market makes more and more necessary the reduction of development time and consequently, the increase of the capacity to quickly respond to the launching of the competitors. One of the most costly phases on the vehicle development process is the field durability test, both in function of the number of prototypes employed and the time needed to its execution. More and more diffused, the fatigue life prediction methods have played an important part in the durability analysis via CAE. Nevertheless, in order they can be reliable and really being able to reduce the development time and cost, they need to be provided with load cases that can accurately represent the field durability tests. This work presents a CAE approach used for light trucks in order to get a reasonable understanding of component durability behavior due to payload increase. In general, road load data is not available for a new payload condition.
Technical Paper

CAE Prediction and Test Correlation for Body Sheet Metal

Finite element based stress analysis and fatigue predictions are practiced routinely in automotive body structural design and development. The accuracy of these simulation results is not fully understood or at least not well documented. Automotive body structures have many kinds of notches, metal thinning due to stamping and cold working etc. Modern fatigue assessment tools do take into account many of these complexities by Neuber corrections, mean-stress correction, critical plane selection, etc. Other challenges exist in the sensitivity to element quality, including warpage, size, element type, interpretation of results, etc. This case study is based on static loading and accelerated fatigue test conducted on a front-end body buck. The stress and fatigue correlations are designed to build confidence in the model and load inputs. The fatigue results are intended to reproduce durability issues that developed during a proving ground test and were then used to verify potential fixes.