Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Ejection Mitigation in Rollover Events - Component Test Development

2007-04-16
2007-01-0374
Although rollover crashes represent a small fraction (approximately 3%) of all motor vehicle crashes, they account for roughly one quarter of crash fatalities to occupants of cars, light trucks, and vans (NHTSA Traffic Safety Facts, 2004(1)). Therefore, the National Highway Traffic Safety Administration (NHTSA) has identified rollover injuries as one of its safety priorities. Motor vehicle manufacturers are developing technologies to reduce the risk of injury associated with rollover collisions. During a series of rollover sensor development tests conducted by General Motors, data was collected and analyzed to identify the required load and energy absorption characteristics of the ejection mitigation device used. General Motors then derived from that data a component level test that can be used to evaluate the potential of a rollover capable side air bag to mitigate the likelihood of ejection in a majority of rollover tests.
Technical Paper

Elemental Composition Determination and Stoichiometric Air-Fuel Ratios of Gasoline Containing Ethanol

2010-10-25
2010-01-2112
Carbon, hydrogen and oxygen are major elements in modern fuels. Varying combinations of these elements in motor fuel alter the stoichiometric air-fuel ratio (A/F). Stoichiometric A/F ratio is an important parameter in engine calibration affecting vehicle performance, emissions and fuel economy. With increasing use of ethanol in automotive fuels in recent years, since it can be made from renewable feedstocks, oxygen contents in fuel are increasing. Oxygen contents can be around 1.7 mass % in European E5 gasoline or 3.5 mass % in U.S. E10 gasoline and up to 29 mass % in E85 fuel. The increase in oxygen content of fuel has resulted in changes in other physical and chemical properties due to the differences between ethanol and hydrocarbons refined from fossil oil. A previous paper (SAE 2010-01-1517) discussed the change in energy content of automotive fuel and the estimation of net heating values from common fuel properties.
Technical Paper

Fuel Tank Running Losses – A Pre-Control Evaporative Emission Baseline

1983-02-01
830630
Prior to nationwide installation of evaporative emission controls in 1971, a significant quantity of hydrocarbon vapors was lost from fuel tank vents during vehicle operation. Earlier published quantifications of that emission source mode were based on test protocols which predated and differed significantly from the now well established 1975 Federal Test Procedure for regulatory emission measurement. This paper reports the results of a series of running loss evaporative emission tests on a fleet of 1970 cars. The testing was designed to provide experimental data under conditions consistent with the regulatory test. Uncontrolled baseline values of 6.7 g (0.9 g/mi) for 1970 cars and 6.0g (0.8 g/mi) for 1960 cars are consequently proposed as benchmarks from which to measure the extent of evaporative emission control accomplished by today's automobiles
Technical Paper

Lean NOx Trap Aftertreatment Technology Impact on Engine Oil Dilution

2009-09-13
2009-24-0153
Euro 6 European legislation emission limits, expected to be introduced around the 2014 timeframe, Lean NOx Trap (LNT) Aftertreatment technology is today considered one the of candidate technology to allow diesel Engine to meet the future Euro 6 limit. The working principle of the LNT is based on its capability to store the NOx engine out during the normal lean (excess of Oxygen) phase operation condition of the Diesel engine. The NOx will be then reduced in a dedicated regeneration phase which consist in creating for relatively short time a rich exhaust gas condition inside the LNT. The LNT regeneration strategy lead to run a Diesel engine with a rich mixture out of the combustion as a Gasoline engine. This can be obtained using advanced air and fuel management. The fuel management implicate the use of delayed injections (after and/or post injections) which can have a direct impact on oil dilution.
X