Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

2006 Corvette Z06 Carbon Fiber Fender- Engineering, Design, and Material Selection Considerations

2005-04-11
2005-01-0468
General Motor's Corvette product engineering was given the challenge to find mass reduction opportunities on the painted body panels of the C6 Z06 through the utilization of carbon fiber reinforced composites (CFRC). The successful implementation of a carbon fiber hood on the 2004 C5 Commemorative Edition Z06 Corvette was the springboard for Corvette Team's appetite for a more extensive application of CFRC on the C6 Z06 model. Fenders were identified as the best application for the technology given their location on the front of the vehicle and the amount of mass saved. The C6 Z06 CFRC fenders provide 6kg reduction of vehicle mass as compared to the smaller RRIM fenders used on the Coupe and Convertible models.
Technical Paper

A New Method of Measuring Aeration and Deaeration of Fluids

2004-10-25
2004-01-2914
This paper describes the design and functionality of an in-situ air entrainment measuring device for analysis of the air entrainment and air release properties of lubricating fluids. The apparatus allows for a variety of measurement techniques for the aeration and deaeration of the lubricating fluid at various temperatures, pressures, and agitation speeds. This test apparatus is patent pending because of its unique ability to allow for continuous, in-situ measurement of the fluid properties and the rates of change of these properties. Most other measurement techniques and apparatuses do not allow for uninterrupted measurement. This apparatus is also unique in that it is capable of detecting minor fluid density changes at a lower level and with more accuracy than all other current techniques or apparatuses.
Technical Paper

Acoustical Advantages of a New Polypropylene Absorbing Material

1999-05-17
1999-01-1669
Sound absorption is one way to control noise in automotive passenger compartments. Fibrous or porous materials absorb sound in a cavity by dissipating energy associated with a propagating sound wave. The objective of this study was to evaluate the acoustic performance of a cotton fiber absorbing material in comparison to a new polypropylene fibrous material, called ECOSORB ®. The acoustical evaluation was done using measurements of material properties along with sound pressure level from road testing of a fully-assembled vehicle. The new polypropylene fibrous material showed significant advantages over the cotton fiber materials in material properties testing and also in-vehicle measurements. In addition to the performance benefits, the polypropylene absorber provided weight savings over the cotton fiber material.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Bulkhead Loading Calculation of an Aluminum Engine Block Coupled with a Rotating Crankshaft through Elastohydrodynamic Bearings

2007-04-16
2007-01-0267
During a new engine development program, or the adaptation of an existing engine to new platform architectures, testing is performed to determine the durability characteristics of the basic engine structure. Such testing helps to uncover High Cycle durability-related issues that can occur at the bulkhead walls as well as cap bolt thread areas in an aluminum cylinder block. When this class of issues occurs, an Elastohydrodynamic (EHD) bearing simulation capability is required. In this study, analytical methods and processes are established to calculate the localized distributed load on the bulkhead. The complexity in performing a system analysis is due to the nonlinear coupling between the bearing hydrodynamic pressure distribution and the crankshaft and block deformation. A system approach for studying the crankshaft-block interaction requires a crankshaft flexible body dynamics model, an engine block assembly flexible body dynamics model and a main bearing lubrication model.
Technical Paper

Concept and Implementation of a Robust HCCI Engine Controller

2009-04-20
2009-01-1131
General Motors recently demonstrated two driveable test vehicles powered by a Homogeneous Charge Compression Ignition (HCCI) engine. HCCI combustion has the potential of a significant fuel economy benefit with reduced after-treatment cost. However, the biggest challenge of realizing HCCI in vehicle applications is controlling the combustion process. Without a direct trigger mechanism for HCCI's flameless combustion, the in-cylinder mixture composition and temperature must be tightly controlled in order to achieve robust HCCI combustion. The control architecture and strategy that was implemented in the demo vehicles is presented in this paper. Both demo vehicles, one with automatic transmission and the other one with manual transmission, are powered by a 2.2-liter HCCI engine that features a central direct-injection system, variable valve lift on both intake and exhaust valves, dual electric camshaft phasers and individual cylinder pressure transducers.
Technical Paper

Cylinder Pressure Data Quality Checks and Procedures to Maximize Data Accuracy

2006-04-03
2006-01-1346
Cylinder pressure data is so completely integral to the combustion system development process that ensuring measurements of the highest possible accuracy is of paramount importance. Three main areas of the pressure measurement and analysis process control the accuracy of measured cylinder pressure and its derived metrics: 1) Association of the pressure data to the engine's crankshaft position or cylinder volume 2) Pegging, or referencing, the pressure sensor output to a known, absolute pressure level 3) The raw, relative pressure output of the piezoelectric cylinder pressure sensor Certain cylinder pressure-based metrics, such as mean effective pressures (MEP) and heat release parameters, require knowledge of the cylinder volume associated with the sampled pressure data. Accurate determination of the cylinder volume is dependent on knowing the rotational position of the crankshaft.
Technical Paper

Design of a Rapid Prototyping Engine Management System for Development of Combustion Feedback Control Technology

2006-04-03
2006-01-0611
Combustion feedback using cylinder pressure sensors, ion current sensors or alternative sensing techniques is actively under investigation by the automotive industry to meet future legislative emissions requirements. One of the drawbacks of many rapid prototyping engine management systems is their available analog interfaces, often limited to 10-12 bits with limited bandwidth, sampling rate and very simple anti-aliasing filters. Processing cylinder pressure or other combustion feedback sensors requires higher precision, wider bandwidths and more processing power than is typically available. For these reasons, Ricardo in collaboration with GM Research has developed a custom, high precision analog input subsystem for the rCube rapid prototyping control system that is specifically targeted at development of combustion feedback control systems.
Technical Paper

Development and Optimization of a Small-Displacement Spark-Ignition Direct-Injection Engine - Stratified Operation

2004-03-08
2004-01-0033
Superior fuel economy was achieved for a small-displacement spark-ignition direct-injection (SIDI) engine by optimizing the stratified combustion operation. The optimization was performed using computational analyses and subsequently testing the most promising configurations experimentally. The fuel economy savings are achieved by the use of a multihole injector with novel spray shape, which allows ultra-lean stratification for a wide range of part-load operating conditions without compromising smoke and hydrocarbon emissions. In this regard, a key challenge for wall-controlled SIDI engines is the minimization of wall wetting to prevent smoke, which may require advanced injection timings, while at the same time minimizing hydrocarbon emissions, which may require retarding injection and thereby preventing over-mixing of the fuel vapor.
Technical Paper

Development of the 2006 Corvette Z06 Structural Cast Magnesium Crossmember

2005-04-11
2005-01-0340
Since its very beginning in 1953, Corvette has been a pioneer in light weight material applications. The new 6th generation corvette high performance Z06 model required aggressive weight savings to achieve its performance and fuel economy targets. In addition to aluminum body structure and some carbon fiber components, the decision to use a magnesium front crossmember was identified to help achieve the targets. An overview of the Structural Cast Magnesium Development (SCMD) project will be presented which will provide information on key project tasks. Project focus was to develop the science and technical expertise to manufacture and validate large structural magnesium castings, which provide a weight reduction potential of 35 percent with respect to aluminum. The die cast magnesium cradle is being produced from a Mg-Al-RE alloy, designated AE44, for high temperature creep and strength performance as well as casting ductility requirements.
Technical Paper

Fatigue Strength Effect of Thread Forming Process in Cast Aluminum

2006-04-03
2006-01-0780
Two thread forming processes, rolling and cutting, were studied for their effects on fatigue in cast aluminum 319-T7. Material was excised from cylinder blocks and tested in rotating-bending fatigue in the form of unnotched and notched specimens. The notched specimens were prepared by either rolling or cutting to replicate threads in production-intent parts. Cut threads exhibited conventional notch behavior for notch sensitive materials. In contrast, plastic deformation induced by rolling created residual compressive stresses in the notch root and significantly improved fatigue strength to the point that most of the rolled specimens broke outside the notch. Fractographic and metallographic investigation showed that cracks at the root of rolled notches were deflected upon initiation. This lengthened their incubation period, which effectively increased fatigue resistance.
Technical Paper

Investigation of the Buoyancy Driven Flow in a Simplified Underhood - Part II, Numerical Study

2006-04-03
2006-01-1607
This paper describes the numerical results for a simplified underhood buoyancy driven flow. The simplified underhood geometry consists of an enclosure, an engine block and two exhaust cylinders mounted along the sides of the engine block. The flow condition is set up in such a way that it mimics the buoyancy driven flow condition in the underhood environment when the vehicle is parked in a windbreak with the engine shut down. The experimental measurements for temperature and velocity of the same configuration were documented in the Part I of the same title. Present study focuses on the numerical issues of calculating temperature and flow field for the same flow configuration. The predicted temperature and velocity were compared with the available measured data. The mesh sizes, mesh type and the orders of spatial and temporal accuracy of the numerical setup are discussed.
Technical Paper

Observer Design for Fuel Reforming in HCCI Engines Using a UEGO Sensor

2009-04-20
2009-01-1132
Homogeneous Charge Compression Ignition (HCCI) combustion shows a high potential of reducing both fuel consumption and exhaust gas emissions. Many works have been devoted to extend the HCCI operation range in order to maximize its fuel economy benefit. Among them, fuel injection strategies that use fuel reforming to increase the cylinder charge temperature to facilitate HCCI combustion at low engine loads have been proposed. However, to estimate and control an optimal amount of fuel reforming in the cylinder of an HCCI engine proves to be challenging because the fuel reforming process depends on many engine variables. It is conceivable that the amount of fuel reforming can be estimated since it correlates with the combustion phasing which in turn can be measured using a cylinder pressure sensor.
Technical Paper

Robust Analysis of Clamp Load Loss in Aluminum Threads due to Thermal Cycling

2009-04-20
2009-01-0989
A DFSS study identified a new mechanism for clamp load loss in aluminum threads due to thermal cycling. In bolted joints tightened to yield, the difference in thermal expansion between the aluminum and steel threads can result in a loss of clamp load with each thermal cycle. This clamp load loss is significantly greater than the loss that can be explained by creep alone. A math model was created and used to conduct a robust analysis. This analysis led to an understanding of the design factors necessary to reduce the cyclic clamp load loss in the aluminum threads. This understanding was then used to create optimized design solutions that satisfy constraints common to powertrain applications. Estimations of clamp load loss due to thermal cycling from the math model will be presented. The estimates of the model will be compared to observed physical test data. A robust analysis, including S/N and mean effect summary will be presented.
Technical Paper

The Next Generation Northstar DOHC 4.6L V8 Engine with Four-Cam Continuously Variable Valve Timing for Cadillac

2003-03-03
2003-01-0922
A new generation Northstar DOHC V8 engine has been developed for a new family of rear-wheel-drive (RWD) Cadillac vehicles. The new longitudinal engine architecture includes strategically selected technologies to enable a higher level of performance and refinement. These technologies include four-cam continuously variable valve timing, low restriction intake and exhaust manifolds and cylinder head ports, a steel crankshaft, electronic throttle control, and close-coupled catalysts. Additional design features beyond those required for RWD include optimized block ribbing, improved coolant flow, and a newly developed lubrication and ventilation system for high-speed operation and high lateral acceleration. This new design results in improved performance over the entire operating range, lower emissions, improved fuel economy, improved operating refinement, and reduced noise/vibration/harshness (NVH).
X