Refine Your Search

Topic

Author

Search Results

Technical Paper

2006 Corvette Z06 Carbon Fiber Fender- Engineering, Design, and Material Selection Considerations

2005-04-11
2005-01-0468
General Motor's Corvette product engineering was given the challenge to find mass reduction opportunities on the painted body panels of the C6 Z06 through the utilization of carbon fiber reinforced composites (CFRC). The successful implementation of a carbon fiber hood on the 2004 C5 Commemorative Edition Z06 Corvette was the springboard for Corvette Team's appetite for a more extensive application of CFRC on the C6 Z06 model. Fenders were identified as the best application for the technology given their location on the front of the vehicle and the amount of mass saved. The C6 Z06 CFRC fenders provide 6kg reduction of vehicle mass as compared to the smaller RRIM fenders used on the Coupe and Convertible models.
Technical Paper

A Comparison of Techniques to Forecast Consumer Satisfaction for Vehicle Ride

2007-04-16
2007-01-1537
This paper presents a comparison of methods for the identification of a reduced set of useful variables using a multidimensional system. The Mahalanobis-Taguchi System and a standard statistical technique are used reduce the dimensionality of vehicle ride based on consumer satisfaction ratings. The Mahalanobis-Taguchi System and cluster analysis are applied to vehicle ride. The research considers 67 vehicle data sets for the 6 vehicle ride parameters. This paper applies the Mahalanobis-Taguchi System to forecast consumer satisfaction and provides a comparison of results with those obtained from a standard statistical approach to the problem.
Technical Paper

A Dynamic Durability Analysis Method and Application to a Battery Support Subsystem

2004-03-08
2004-01-0874
The battery support in a small car is an example of a subsystem that lends itself to mounted component dynamic fatigue analysis, due to its weight and localized attachments. This paper describes a durability analysis method that was developed to define the required enforced motion, stress response, and fatigue life for such subsystems. The method combines the large mass method with the modal transient formulation to determine the dynamic stress responses. The large mass method was selected over others for its ease of use and efficiency when working with the modal formulation and known accelerations from a single driving point. In this example, these known accelerations were obtained from the drive files of a 4-DOF shake table that was used for corresponding lab tests of a rear compartment body structure. These drive files, originally displacements, were differentiated twice and filtered to produce prescribed accelerations to the finite element model.
Technical Paper

A FEA based Procedure to Perform Statistical Energy Analysis

2003-05-05
2003-01-1553
A technique which uses Finite Element Analysis (FEA) to derive important parameters involved in SEA (Statistical Energy Analysis) is discussed. Application of the method to a variety of structures has yielded good correlation with experimentally generated results. SEA parameters including Coupling Loss Factors (CLFs), modal densities, and subsystem equivalent masses were obtained. The technique has the advantage of incorporating structural detail to enhance SEA predictions at lower frequencies where global modes are important, and it can be applied early in the design phase since no hardware is required. With this study, SEA is more readily applied to structure-borne noise problems in vehicles.
Technical Paper

A Proactive Design Development Process - An Automotive Example of Door Glass Guidance Mechanism

2001-03-05
2001-01-1304
Today's competitive market requires new products to have extremely high Quality; customer expectation demands it. Testing, Validation, Setting Requirements, Failure Mode & Effect Analysis (FMEA), and Design Reviews by themselves do not improve a product; they only provide information that has to be translated into Design/Manufacturing & Service tasks. The quality of these tasks determines how well the new product will perform at its introduction. This paper outlines a generic Development Process through the use of an automotive example for a Door Glass Guidance Mechanism. This process includes the fundamental steps involving recommendations for setting requirements, benchmarking, and a methodology on how to design in requirements through the use of analytical and experimental tools to create Robust Designs. Also included are examples of Validation and Assessment Plans that are requirement driven.
Technical Paper

An Application for Fatigue Damage Analysis Using Power Spectral Density from Road Durability Events

1998-02-23
980689
A method is presented to process random vibration data from a complete road durability test environment as stationary segments and then develop test profiles based on fatigue content of their power spectral densities. Background is provided on existing techniques for estimating fatigue damage in the frequency domain. A general model for stress response to acceleration is offered to address the vibration test's requirement for acceleration data and the fatigue prediction method's requirement for stress data. With these tools, the engineer can extend test correlation beyond failure modes to include retention of estimated fatigue damage. Recommendations allow for test time compression from editing and improve existing exaggeration methods.
Technical Paper

Analytical Approach to the Robust Design of Dimensional Datum Schemes

2006-04-03
2006-01-0500
This paper presents the fundamental principles of variation analysis and robust design for dimensional datum schemes. The kinematics equations for rigid body motions are simplified through linearization. The simplified formulations explicitly relate the dimensional deviations of a rigid part with its datum scheme configuration and dimensional variations at datum target points. This simplified approach can be used with either the first order Taylor series approximation or Monte Carlo simulation to study the statistical characteristics of datum scheme variations. A headlamp case study is presented that shows the application procedures and demonstrates that both Taylor series and Monte Carlo methods generate comparable results, but the former offers more efficiency and convenience due to its close form formulation. This approach has found many applications especially in on-site problem solving and fast what-if studies.
Technical Paper

Application of Experimental Transfer Path Analysis and Hybrid FRF-Based Substructuring Model to SUV Axle Noise

2005-04-11
2005-01-1833
This paper describes an axle gear whine noise reduction process that was developed and applied using a combination of experimental and analytical methods. First, an experimental Transfer Path Analysis (TPA) was used to identify major noise paths. Next, modeling and forced response simulation were conducted using the Hybrid FEA-Experimental FRF method known as HYFEX [1]. The HYFEX model consisted of an experimental FRF representation of the frame/body and a finite element (FE) model of the driveline [2] and suspension. The FE driveline model was calibrated using experimental data. The HYFEX model was then used to simulate the axle noise reduction that would be obtained using a modified frame, prior to the availability of a prototype. Hardware testing was used as the final step in the process to confirm the results of the simulation.
Technical Paper

Application of Principle Component Analysis to Low Speed Rear Impact - Design for Six Sigma Project at General Motors

2009-04-20
2009-01-1204
This study involves an application of Principal Component Analysis (PCA) conducted in support of a Design for Six Sigma (DFSS) project. Primary focus of the project is to optimize seat parameters that influence Low Speed Rear Impact (LSRI) whiplash performance. During the DFSS study, the project team identified a need to rank order critical design factors statistically and establish their contribution to LSRI performance. It is also required to develop a transfer function for the LSRI rating in terms of test response parameters that can be used for optimization. This statistical approach resulted in a reliable transfer function that can applied across all seat designs and enabled us to separate vital few parameters from several many.
Technical Paper

Assessment of a Vehicle Concept Finite-Element Model for Predicting Structural Vibration

2001-04-30
2001-01-1402
A vehicle concept finite-element model is experimentally assessed for predicting structural vibration to 50 Hz. The vehicle concept model represents the body structure with a coarse mesh of plate and beam elements, while the suspension and powertrain are modeled with a coarse mesh of rigid-links, beams, and lumped mass, damping, and stiffness elements. Comparisons are made between the predicted and measured frequency-response-functions (FRFs) and modes of (a) the body-in-white, (b) the trimmed body, and (c) the full vehicle. For the full vehicle, the comparisons are with a comprehensive set of measured FRFs from 63 tests of nominally identical vehicles that demonstrate the vehicle-to-vehicle variability of the measured FRF response.
Technical Paper

Automation of Structural Fatigue/Reliability Assessment Using iSIGHT, MSC/Nastran and nCode

2005-04-11
2005-01-0823
The goal was to automate the entire analytical process of structural fatigue life variation assessment with respect to the variations associated with the geometry such as thickness, material properties and loading conditions. Consequently, the structural reliability is evaluated systematically. This process automation has been realized by using an internally developed software package called Structural Fatigue/Reliability Sensitivity II (i.e. FRS II). The package is a bundle of MSC/Nastran, nCode, iSIGHT, and internally developed program scripts.
Technical Paper

Axiomatic Design for a Total Robust Development Process

2009-04-20
2009-01-0793
In this article, the authors illustrate the benefits of axiomatic design (AD) for robust optimization and how to integrate axiomatic design into a total robust design process. Similar to traditional robust design, the purpose of axiomatic design is to improve the probability of a design in meeting its functional targets at early concept generation stage. However, axiomatic design is not a standalone method or tool and it needs to be integrated with other tools to be effective in a total robust development process. A total robust development process includes: system design, parameter design, tolerance design, and tolerance specifications [1]. The authors developed a step-by-step procedure for axiomatic design practices in industrial applications for consistent and efficient deliverables. The authors also integrated axiomatic design with the CAD/CAE/statistical/visualization tools and methods to enhance the efficiency of a total robust development process.
Technical Paper

Brake and Cruise System Integration using Robust Engineering

2003-03-03
2003-01-1095
This paper presents a project that was done to solve an integration problem between a brake system and a cruise control system on a GM vehicle program, each of which was supplied by a different supplier. This paper presents how the problem was resolved using a CAE tool which was a combination of formulated MS/Excel spreadsheet, Overdrive (GM internal code), and iSIGHT of Engineous Software Inc, which is a process integrator and process automator. A sensitivity study of system reliability was conducted using iSIGHT. The most sensitive factor was found through the sensitivity study. Thereafter, a Robust design was obtained. The recommended Robust Design was implemented in the vehicle program, which led to a substantial cost saving. The CAE software tool (the combination) developed through the problem solving process will be used to ensure quality of brake and cruise system performance for future vehicle programs.
Journal Article

CVJ and Knuckle Design Optimization to Protect Inboard Wheel Bearing Seals from Splash

2016-09-18
2016-01-1956
For higher mileage vehicles, noise from contaminant ingress is one of the largest durability issues for wheel bearings. The mileage that wheel bearing sealing issues increase can vary due to multiple factors, such as the level of corrosion for the vehicle and the mating components around the wheel bearing. In general, sealing issues increase after 20,000 to 30,000 km. Protecting the seals from splash is a key step in extending bearing life. Benchmarking has shown a variety of different brake corner designs to protect the bearing from splash. This report examines the effect of factors from different designs, such as the radial gap between constant velocity joint (CVJ) slinger and the knuckle, knuckle labyrinth height and varying slinger designs to minimize the amount of splash to the bearing inboard seal. This report reviews some of the bearing seal failure modes caused by splash.
Technical Paper

Cabin Air Humidity Model and its Application

2015-04-14
2015-01-0369
In addition to the thermal comfort of the vehicle occupants, their safety by ensuring adequate visibility is an objective of the automotive climate control system. An integrated dew point and glass temperature sensor is widely used among several other technologies to detect risk of fog formation on the cabin side (or inner) surface of the windshield. The erroneous information from a sensor such as the measurement lag can cause imperfect visibility due to the delayed response of the climate control system. Also the high value, low cost vehicles may not have this sensor due to its high cost. A differential equation based model of the cabin air humidity is proposed to calculate in real-time specific humidity of the passenger compartment air. The specific humidity is used along with the windshield surface temperature to determine relative humidity of air and therefore, the risk of fog formation on the interior surface of a windshield.
Technical Paper

Changing Inspection and Maintenance Requirements: … A Result of New Emission Control Technology

1979-02-01
790783
Amendments to the Clean Air Act require the implementation of inspection/maintenance (I/M) programs in areas designated as non-attainment and unable to meet the National Ambient Air Quality Standards by 1982. Current I/M programs have been developed using data representative of pre- and early-catalyst emission control technology. Changes to current emission control systems and electronic computer controlled systems represent new emission control technology. This paper addresses the I/M situation as related to these system changes. Results of tests on a prototype system are presented. Parameter inspection and the utilization of built-in diagnostics on future systems have the potential to maximize the effectiveness of I/M programs.
Technical Paper

Computational Aeroacoustics Investigation of Automobile Sunroof Buffeting

2007-05-15
2007-01-2403
A numerical investigation of automobile sunroof buffeting on a prototype sport utility vehicle (SUV) is presented, including experimental validation. Buffeting is an unpleasant low frequency booming caused by flow-excited Helmholtz resonance of the interior cabin. Accurate prediction of this phenomenon requires accounting for the bi-directional coupling between the transient shear layer aerodynamics (vortex shedding) and the acoustic response of the cabin. Numerical simulations were performed using the PowerFLOW code, a CFD/CAA software package from Exa Corporation based on the Lattice Boltzmann Method (LBM). The well established LBM approach provides the time-dependent solution to the compressible Navier-Stokes equations, and directly captures both turbulent and acoustic pressure fluctuations over a wide range of scales given adequate computational grid resolution.
Technical Paper

Computational Analysis and Design to Minimize Vehicle Roof Rack Wind Noise

2005-04-11
2005-01-0602
This paper presents a study of roof rack wind noise using commercial Computational Fluid Dynamics (CFD) software. The focus is to predict the noise generated from the roof rack cross bars mounted on a realistic vehicle geometry. Design iterations are created by altering the cross bar orientation. Results from the CFD simulations include frequency spectra of Sound Pressure Level (SPL) for comparison to typical wind tunnel measurements. Aerodynamic results of body lift, drag, and transient flow visualization are also produced to support the noise data. The CFD and physical experiments compare very well with respect to tonal noise generation, tonal frequency content, and relative magnitudes. It is concluded that the CFD method is suitable for predicting relative performance, ranking design concepts, and optimizing large scale geometry parameters of vehicle roof racks in a production-engineering environment.
Technical Paper

Coupling Meshfree Methods with Reliability Analysis Techniques

2003-03-03
2003-01-0145
This report describes the use of meshfree methods for response and design sensitivity calculations within structural reliability analysis when geometric shape is a random variable. Brief descriptions of meshfree methods and advanced probabilistic methods are provided. An existing interface between the probabilistic analysis and traditional finite element method is modified to allow the use of meshfree methods for response and design sensitivity calculations within the probabilistic analysis routine. Two examples that treat design shape as a random variable are presented to assess the accuracy and use of meshfree methods for reliability analysis.
Technical Paper

Designing Automotive Subsystems Using Virtual Manufacturing and Distributed Computing

2008-04-14
2008-01-0288
Adopting robust design principles is a proven methodology for increasing design reliability. General Motors Powertrain (GMPT) has incorporated robust design principles into their Signal Delivery Subsystem (SDSS) development process by moving traditional prototype manufacturing and test functions from hardware to software. This virtual manufacturing technique, where subsystems are built and tested using simulation software, increases the number of possible prototype iterations while simultaneously decreasing the time required to gather statistically meaningful test results. This paper describes how virtual manufacturing was developed using distributed computing.
X