Refine Your Search

Topic

Author

Search Results

Technical Paper

1996 GM 7.4 Liter Engine Upgrade

1996-02-01
960012
General Motors Powertrain Division has developed the next generation big block V8 engine for introduction in the 1996 model year. In addition to meeting tighter emission and on-board diagnostic legislation, this engine evolved to meet both customer requirements and competitive challenges. Starting with the proven dependability of the time tested big block V8, goals were set to substantially increase the power, torque, fuel economy and overall pleaseability of GM's large load capacity gasoline engine. The need for this new engine to meet packaging requirements in many vehicle platforms, both truck and OEM, as well as a requirement for minimal additional heat rejection over the engine being replaced, placed additional constraints on the design.
Technical Paper

2006 Chevrolet Corvette C6 Z06 Aerodynamic Development

2005-04-11
2005-01-1943
This paper is intended to give a general overview of the key aerodynamic developments for the 2006 Chevrolet Corvette C6 Z06. Significant computational and wind tunnel time were used to develop the 2006 Z06 to provide it with improved high speed stability, increased cooling capability and equivalent drag compared to the 2004 Chevrolet Corvette C5 Z06.
Technical Paper

A Comparison of Techniques to Forecast Consumer Satisfaction for Vehicle Ride

2007-04-16
2007-01-1537
This paper presents a comparison of methods for the identification of a reduced set of useful variables using a multidimensional system. The Mahalanobis-Taguchi System and a standard statistical technique are used reduce the dimensionality of vehicle ride based on consumer satisfaction ratings. The Mahalanobis-Taguchi System and cluster analysis are applied to vehicle ride. The research considers 67 vehicle data sets for the 6 vehicle ride parameters. This paper applies the Mahalanobis-Taguchi System to forecast consumer satisfaction and provides a comparison of results with those obtained from a standard statistical approach to the problem.
Technical Paper

A Downforce Optimization Study for a Racing Car Shape

2005-04-11
2005-01-0545
A new process is developed for the aerodynamic shape optimization of racing cars using Computational Fluid Dynamics (CFD). The process is based on using the mesh morphing techniques to create new designs for analysis by morphing the CFD mesh of the original design. The resulting improvements in the analysis turnaround time allow a quick exploration of the design parameters for determining the optimum aerodynamic design. The approach is used to perform a parametric study to optimize a racing car shape for maximum downforce. The analysis procedure used for the CFD analysis is tuned to ensure grid independence and accuracy of the predictions. The parametric study shows that the morpher-based process can quickly and precisely create designs for the CFD analysis. This process can become the foundation for the automated aerodynamic design optimization of the racing cars.
Technical Paper

A Dynamic Durability Analysis Method and Application to a Battery Support Subsystem

2004-03-08
2004-01-0874
The battery support in a small car is an example of a subsystem that lends itself to mounted component dynamic fatigue analysis, due to its weight and localized attachments. This paper describes a durability analysis method that was developed to define the required enforced motion, stress response, and fatigue life for such subsystems. The method combines the large mass method with the modal transient formulation to determine the dynamic stress responses. The large mass method was selected over others for its ease of use and efficiency when working with the modal formulation and known accelerations from a single driving point. In this example, these known accelerations were obtained from the drive files of a 4-DOF shake table that was used for corresponding lab tests of a rear compartment body structure. These drive files, originally displacements, were differentiated twice and filtered to produce prescribed accelerations to the finite element model.
Technical Paper

A New Method of Measuring Aeration and Deaeration of Fluids

2004-10-25
2004-01-2914
This paper describes the design and functionality of an in-situ air entrainment measuring device for analysis of the air entrainment and air release properties of lubricating fluids. The apparatus allows for a variety of measurement techniques for the aeration and deaeration of the lubricating fluid at various temperatures, pressures, and agitation speeds. This test apparatus is patent pending because of its unique ability to allow for continuous, in-situ measurement of the fluid properties and the rates of change of these properties. Most other measurement techniques and apparatuses do not allow for uninterrupted measurement. This apparatus is also unique in that it is capable of detecting minor fluid density changes at a lower level and with more accuracy than all other current techniques or apparatuses.
Technical Paper

A Simulation Model for the Saturn VUE Green Line Hybrid Vehicle

2006-04-03
2006-01-0441
In developing the 2007 Model Year Saturn VUE Green Line hybrid vehicle, a vehicle model for prediction of fuel economy and performance was developed. This model was developed in Matlab / Simulink / Stateflow by augmenting an existing conventional vehicle model to include hybrid components and controls. The generic structure and the functionalities of the model are presented. This simulation model was used for rapid concept selection and requirements balancing early in the vehicle development process. Engine usage and energy distributions are shown based on simulation results. Fuel economy breakdown was also discussed.
Technical Paper

An Integrated Chassis Control for Vehicle-Trailer Stability and Handling Performance

2004-05-04
2004-01-2046
To cope with the conflict requirements between the stability and handling performance, and the high-order and complex vehicle-trailer plant, a model tracking method is proposed. With this approach, a feedback control is designed to “decouple” the vehicle and the trailer plant, such that each tracks a well-defined second-order reference model independently yet coordinately. A feedforward control is designed to maintain its system steady-state performance. As a result, the proposed approach not only improves the system transient responses, but also its steady-state performance. This approach further yields a simple yet analytical control derivation that provides more insight to the system dynamics.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Application of Hydraulic Body Mounts to Reduce the Freeway Hop Shake of Pickup Trucks

2009-05-19
2009-01-2126
When pickup trucks are driven on concrete paved freeways, freeway hop shake is a major complaint. Freeway hop shake occurs when the vehicle passes over the concrete joints of the freeway which impose in-phase harmonic road inputs. These road inputs excite vehicle modes that degrade ride comfort. The worst shake level occurs when the vehicle speed is such that the road input excites the vehicle 1st bending mode and/or the rear wheel hop mode. The hop and bending mode are very close in frequency. This phenomenon is called freeway hop shake. Automotive manufacturers are searching for ways to mitigate freeway hop shake. There are several ways to reduce the shake amplitude. This paper documents a new approach using hydraulic body mounts to reduce the shake. A full vehicle analytical model was used to determine the root cause of the freeway hop shake.
Technical Paper

Architecture for Robust Efficiency:GM's “Precept” PNGV Vehicle

2000-04-02
2000-01-1582
General Motors is developing a hybrid electric concept vehicle from its “Precept” high efficiency vehicle architecture, to satisfy requirements of the Partnership for a New Generation of Vehicles (PNGV) program. This Technology Demonstration Vehicle (TDV) features fundamental architecture that is unconventional compared to contemporary passenger car design, or even to other hybrid vehicles. This paper describes this unique architecture and how the vehicle's most significant features complement each other in harmonious design. It also notes how these features contribute to robustness of efficiency.
Technical Paper

Assessment of Closed-Wall Wind Tunnel Blockage using CFD

2004-03-08
2004-01-0672
Effects of the wind tunnel blockage in a closed-wall wind tunnel were investigated using computational fluid dynamics (CFD). Flow over three generic vehicle models representing a passenger sedan, a sports utility vehicle (SUV), and a pickup truck was solved. The models were placed in a baseline virtual wind tunnel as well as four additional virtual wind tunnels, each with different size cross-sections, providing different levels of wind tunnel blockage. For each vehicle model, the CFD analysis produced an aerodynamic drag coefficient for the vehicle at the blockage free condition as well as the blockage effect increment for the baseline wind tunnel. A CFD based blockage correction method is proposed. Comparisons of this method to some existing blockage correction methods for closed-wall wind tunnel are also presented.
Technical Paper

Automated Aerodynamic Design Optimization Process for Automotive Vehicle

2003-03-03
2003-01-0993
An automatic optimization process for the aerodynamic design of automotive vehicle shapes is presented. The Computational Fluid Dynamics (CFD) mesh generation and the analysis software packages are coupled for transfer of data and information between the two packages. This communication enables an automated process in which designs are created and analyzed for the aerodynamic drag. New designs are created by morphing the CFD model for the baseline design. The automated process is applied to perform a parametric study on a generic automobile sedan shape. The results show that the process can be used for aerodynamic optimization of any automotive vehicle shape. The turnaround for the automated process is at least an order of magnitude less than the conventional analysis process.
Technical Paper

Bulkhead Loading Calculation of an Aluminum Engine Block Coupled with a Rotating Crankshaft through Elastohydrodynamic Bearings

2007-04-16
2007-01-0267
During a new engine development program, or the adaptation of an existing engine to new platform architectures, testing is performed to determine the durability characteristics of the basic engine structure. Such testing helps to uncover High Cycle durability-related issues that can occur at the bulkhead walls as well as cap bolt thread areas in an aluminum cylinder block. When this class of issues occurs, an Elastohydrodynamic (EHD) bearing simulation capability is required. In this study, analytical methods and processes are established to calculate the localized distributed load on the bulkhead. The complexity in performing a system analysis is due to the nonlinear coupling between the bearing hydrodynamic pressure distribution and the crankshaft and block deformation. A system approach for studying the crankshaft-block interaction requires a crankshaft flexible body dynamics model, an engine block assembly flexible body dynamics model and a main bearing lubrication model.
Technical Paper

CFD Simulations for Flow Over Pickup Trucks

2005-04-11
2005-01-0547
Computational fluid dynamics (CFD) was used to simulate the flow field over a pickup truck. The simulation was based on a steady state formulation and the focus of the simulation was to assess the capabilities of the currently used CFD tools for vehicle aerodynamic development for pickup trucks. Detailed comparisons were made between the CFD simulations and the existing experiments for a generic pickup truck. It was found that the flow structures obtained from the CFD calculations are very similar to the corresponding measured mean flows. Furthermore, the surface pressure distributions are captured reasonably well by the CFD analysis. Comparison for aerodynamic drags was carried out for both the generic pickup truck and a production pickup truck. Both the simulations and the measurements show the same trends for the drag as the vehicle geometry changes, This suggests that the steady state CFD simulation can be used to aid the aerodynamic development of pickup trucks.
Technical Paper

CFD-based Robust Optimization of Front-end Cooling Airflow

2007-04-16
2007-01-0105
Development and integration of the cooling system for an automotive vehicle requires a balancing act between several performance and styling objectives. The cooling system needs to provide sufficient air for heat rejection with minimal impact on the aerodynamic drag, styling requirements and other criteria. An optimization of various design parameters is needed to develop a design to meet these objectives in a short amount of time. Increase in the accuracy of the numerical predictions and reduction in the turn-around time has made it possible for Computational Fluid Dynamics (CFD) to be used early in the design phase of the vehicle development. This study shows application of the CFD for robust design of the engine cooling system.
Technical Paper

Combustion Characteristics of a Reverse-Tumble Wall-Controlled Direct-Injection Stratified-Charge Engine

2003-03-03
2003-01-0543
Experimentally obtained combustion responses of a typical reverse-tumble wall-controlled direct-injection stratified-charge engine to operating variables are described. During stratified-charge operation, the injection timing, ignition timing, air-fuel ratio, and levels of exhaust gas recirculation (EGR) generally determine the fuel economy and emissions performance of the engine. A detailed heat-release analysis of the experimental cylinder-pressure data was conducted. It was observed that injection and ignition timings determine the thermal efficiency of the engine by controlling primarily the combustion efficiency of the stratified charge. Hence, combustion phasing is determined by a compromise between work-conversion efficiency and combustion efficiency. To reduce nitric-oxide (NOx) emissions, a reduction in overall air-fuel ratio as well as EGR addition is required.
Technical Paper

Compatibility Study of Fluorinated Elastomers in Automatic Transmission Fluids

2008-06-23
2008-01-1619
A compatibility study was conducted on fluorinated elastomers (FKM and FEPM) in various Automatic Transmission Fluids (ATF). Representative compounds from various FKM families were tested by three major FKM raw material producers - DuPont Performance Elastomers (DPE), Dyneon and Solvay. All involved FKM compounds were tested in a newly released fluid (ATF-A) side-by-side with conventional transmission fluids, at 150°C for various time intervals per ASTM D471. In order to evaluate the fluid compatibility limits, some FKM's were tested as long as 3024 hrs, which is beyond the normal service life of seals. Tensile strength and elongation were monitored as a function of ATF exposure time. The traditional dipolymers and terpolymers showed poor resistance to the new fluid (ATF-A). Both types demonstrated significant decreases in strength and elongation after extended fluid exposure at 150°C.
Technical Paper

Computational Aeroacoustics Investigation of Automobile Sunroof Buffeting

2007-05-15
2007-01-2403
A numerical investigation of automobile sunroof buffeting on a prototype sport utility vehicle (SUV) is presented, including experimental validation. Buffeting is an unpleasant low frequency booming caused by flow-excited Helmholtz resonance of the interior cabin. Accurate prediction of this phenomenon requires accounting for the bi-directional coupling between the transient shear layer aerodynamics (vortex shedding) and the acoustic response of the cabin. Numerical simulations were performed using the PowerFLOW code, a CFD/CAA software package from Exa Corporation based on the Lattice Boltzmann Method (LBM). The well established LBM approach provides the time-dependent solution to the compressible Navier-Stokes equations, and directly captures both turbulent and acoustic pressure fluctuations over a wide range of scales given adequate computational grid resolution.
Technical Paper

Computing the Dynamic Forces and Moments Acting on the Crank-Flywheel Joint From Measurement Data

2003-05-05
2003-01-1639
This paper describes a technique to approximately compute the dynamic forces and moments acting on the crankshaft-flywheel joint as well as the crank nose using measurement data. The same technique can also be used on data generated by dynamic simulations. The method is based on rigid body dynamics where the measured accelerations and velocities are substituted into the equations of motion to compute the dynamic forces and moments. However, using the measured (or simulated data) in the equations of motion is not straightforward and requires special measurement techniques and data analysis procedures. This paper describes the special measurement techniques and apparatus, as well as the data analysis techniques necessary for proper computation of the dynamic forces and moments.
X