Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3D CFD Modeling of an Electric Motor to Predict Spin Losses at Different Temperatures

2024-04-09
2024-01-2208
With the advent of this new era of electric-driven automobiles, the simulation and virtual digital twin modeling world is now embarking on new sets of challenges. Getting key insights into electric motor behavior has a significant impact on the net output and range of electric vehicles. In this paper, a complete 3D CFD model of an Electric Motor is developed to understand its churning losses at different operating speeds. The simulation study details how the flow field develops inside this electric motor at different operating speeds and oil temperatures. The contributions of the crown and weld endrings, crown and weld end-windings, and airgap to the net churning loss are also analyzed. The oil distribution patterns on the end-windings show the effect of the centrifugal effect in scrapping oil from the inner structures at higher speeds. Also, the effect of the sump height with higher operating speeds are also analyzed.
Technical Paper

A 3-D CFD Investigation of Ball Bearing Weir Geometries and Design Considerations for Lubrication

2024-04-09
2024-01-2439
The study focuses on understanding the air and oil flow characteristics within a ball bearing during high-speed rotation, with a particular emphasis on optimizing frictional heat dissipation and oil lubrication methods. Computational fluid dynamics (CFD) techniques are employed to analyze the intricate three-dimensional airflow and oil flow patterns induced by the motion of rotating and orbiting balls within the bearing. A significant challenge in conducting three-dimensional CFD studies lies in effectively resolving the extremely thin gaps existing between the balls, races, and cages within the bearing assembly. In this research, we adopt the ball-bearing structured meshing strategy offered by Simerics-MP+ to meticulously address these micron-level clearances, while also accommodating the rolling and rotation of individual balls. Furthermore, we investigate the impact of different designs of the lubrication ports to channel oil to other locations compared to the ball bearings.
Technical Paper

A 3-D CFD Study of the Lubricating Oil Flow Path in a Hybrid Vehicle Transmission System

2024-04-09
2024-01-2635
Effective design of the lubrication path greatly influences the durability of any transmission system. However, it is experimentally impossible to estimate the internal distribution of the automotive transmission fluid (ATF) to different parts of the transmission system due to its structural complexities. Hybrid vehicle transmission systems usually consist of different types of bearings (ball bearings, thrust bearings, roller bearings, etc.) in conjunction with gear systems. It is a perennial challenge to computationally simulate such complicated rotating systems. Hence, one-dimensional models have been the state of the art for designing these intricate transmission systems. Though quantifiable, the 1D models still rely heavily on some testing data. Furthermore, HEVs (hybrid electric vehicles) desire a more efficient lubrication system compared to their counterparts (Internal combustion engine vehicles) to extend the range of operation on a single charge.
Technical Paper

A Comprehensive Testing and Evaluation Approach for Autonomous Vehicles

2018-04-03
2018-01-0124
Performance testing and evaluation always plays an important role in the developmental process of a vehicle, which also applies to autonomous vehicles. The complex nature of an autonomous vehicle from architecture to functionality demands even more quality-and-quantity controlled testing and evaluation than ever before. Most of the existing testing methodologies are task-or-scenario based and can only support single or partial functional testing. These approaches may be helpful at the initial stage of autonomous vehicle development. However, as the integrated autonomous system gets mature, these approaches fall short of supporting comprehensive performance evaluation. This paper proposes a novel hierarchical and systematic testing and evaluation approach to bridge the above-mentioned gap.
Technical Paper

A Maneuver-Based Threat Assessment Strategy for Collision Avoidance

2018-04-03
2018-01-0598
Advanced driver assistance systems (ADAS) are being developed for more and more complicated application scenarios, which often require more predictive strategies with better understanding of driving environment. Taking traffic vehicles’ maneuvers into account can greatly expand the beforehand time span for danger awareness. This paper presents a maneuver-based strategy to vehicle collision threat assessment. First, a maneuver-based trajectory prediction model (MTPM) is built, in which near-future trajectories of ego vehicle and traffic vehicles are estimated with the combination of vehicle’s maneuvers and kinematic models that correspond to every maneuver. The most probable maneuvers of ego vehicle and each traffic vehicles are modeled and inferred via Hidden Markov Models with mixture of Gaussians outputs (GMHMM). Based on the inferred maneuvers, trajectory sets consisting of vehicles’ position and motion states are predicted by kinematic models.
Technical Paper

A Nonlinear Slip Ratio Observer Based on ISS Method for Electric Vehicles

2018-04-03
2018-01-0557
Knowledge of the tire slip ratio can greatly improve vehicle longitudinal stability and its dynamic performance. Most conventional slip ratio observers were mainly designed based on input of non-driven wheel speed and estimated vehicle speed. However, they are not applicable for electric vehicles (EVs) with four in-wheel motors. Also conventional methods on speed estimation via integration of accelerometer signals can often lead to large offset by long-time integral calculation. Further, model uncertainties, including steady state error and unmodeled dynamics, are considered as additive disturbances, and may affect the stability of the system with estimated state error. This paper proposes a novel slip ratio observer based on input-to-state stability (ISS) method for electric vehicles with four-wheel independent driving motors.
Technical Paper

A Parametric Sensitivity Study of Predicted Transient Abuse Loads for Sizing Electric Drive-Unit and Driveline Components

2022-03-29
2022-01-0680
The design and development of electric vehicles involves many unique challenges. One such challenge involves accurately predicting driveline abuse torque loads early in the design cycle to aid with sizing drive-unit and driveline components. Since electrified drivelines typically lack a torque-limiting “fuse” element such as a torque converter or slipping clutch, they can be vulnerable to sudden transient events involving high wheel acceleration or deceleration. Component sizing must account for the loads caused by such events, and these loads must be accurately quantified early on when vehicle parameters haven’t been finalized yet. Early load predictions can be made by completing abuse maneuver simulations where key parameters are varied to gauge their influence on simulated loads. Understanding how these parameters impact loads allows for better risk assessment during the design process, as these parameters will inevitably change until a final design is iterated upon.
Journal Article

A Process to Characterize the Sound Directivity Pattern of AVAS Speaker

2023-05-08
2023-01-1095
Speaker performance in Acoustic Vehicle Alerting System (AVAS) plays a crucial role for pedestrian safety. Sound radiation from AVAS speaker has obvious directivity pattern. Considering this feature is critical for accurately simulating the exterior sound field of electrical vehicles. This paper proposes a new process to characterize the sound directivity pattern of AVAS speaker. The first step of the process is to perform an acoustic testing to measure the sound pressure radiated from the speaker at a certain number of microphone locations in a free field environment. Based on the geometry of a virtual speaker, the locations of each microphone and measured sound pressure data, an inverse method, namely the inverse pellicular analysis, is adopted to recover a set of vibration pattern of the virtual speaker surface. The recovered surface vibration pattern can then be incorporated in the full vehicle numerical model as an excitation for simulating the exterior sound field.
Technical Paper

A Renewed Look at Centralized vs. Decentralized Actuation for Braking Systems

2023-11-05
2023-01-1865
De-centralized brake actuation – that is, brake systems that incorporate individual actuators at each wheel brake location to both provide the apply energy and the modulation of braking force – is not a new area of study. Typically realized in the form of electro-mechanical brake calipers or drum brakes, or as “single corner” hydraulic actuators, de-centralized actuation in braking systems has already been deployed in production on General Motor EV1 Electric Vehicle (1997) in the form of electric drum brakes and has been studied continually by the automotive industry since then. It is frequently confused with “brake by wire,” and indeed practical implementations of de-centralized actuation are a form of brake by wire technology. However, with millions of vehicles on the road already with “brake by wire” systems - the vast majority of which have centralized brake actuation – the future of “brake by wire” is arguable settled.
Technical Paper

A Solution for a Fail-Operational Control of Steer-by-Wire System without Mechanical Backup Connection

2021-04-06
2021-01-0931
The past five years have seen significant research into autonomous vehicles that employ a by-wire steering rack actuator and no steering wheel. There is a clear synergy between these advancements and the parallel development of complete Steer-by-Wire systems for human-operated passenger vehicle applications. Steer-by-Wire architectures presented thus far in the literature require multiple layers of electrical and/or mechanical redundancy to achieve the safety goals. Unfortunately, this level of redundancy makes it difficult to simultaneously achieve three key manufacturer imperatives: safety, reliability, and cost. Hindered by these challenges, as of 2020 only one production car platform employs a Steer-by-Wire system. This paper presents a Steer-by-Wire architectural solution featuring fail-operational steering control architected with the objective of achieving all system safety, reliability, and cost goals.
Technical Paper

A System of Systems Approach to Automotive Challenges

2018-04-03
2018-01-0752
The automotive industry is facing many significant challenges that go far beyond the design and manufacturing of automobile products. Connected, autonomous and electric vehicles, smart cities, urbanization and the car sharing economy all present challenges in a fast-changing environment which the automotive industry must adapt to. Cars no longer are just standalone systems, but have become constituent systems (CS) in larger System of Systems (SoS) context. This is reflected in the emergence of several acronyms such as vehicle-to-everything (V2X), vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-grid (V2G) expressions. System of Systems are defined systems of interest whose elements (constituent systems) are managerially and operationally independent systems. This interoperating and/or integrated collection of constituent systems usually produce results unachievable by the individual systems alone, for example the use of car batteries as virtual power plants.
Journal Article

Active Masking of Tonal Noise using Motor-Based Acoustic Generator to Improve EV Sound Quality

2021-08-31
2021-01-1021
Electric motor whine is one of the main noise sources of electric vehicles (EVs). Without engine masking noise, high pitch tonal noise from electric motor can be highly annoying and raise sound quality issues for electrified propulsion systems. This paper describes a patented new technology that controls electric motor to actively mask annoying high-pitch tonal noise by (i) controlling electric motor to create complementary low order tones to enrich sound complexity and distract high pitch tones; (ii) controlling motor to generate random dithering noise to raise masking noise floor and reduce tone-to-noise ratio around tonal targets; (iii) combining complementary injection at low frequency and dithering at high frequency for enhanced masking. This new technology enables controlling masking noise level, frequency, order and bandwidth as a function of motor torque and speed for most effective masking.
Technical Paper

Active Safety and Driver Assistance Technologies - An OEM Perspective: Technology Leadership Brief

2012-10-08
2012-01-9002
The overall technology trend of Active Safety and Driver Assistance systems is relatively clear: increasing capability to avoid crashes as well as convenience on a path toward autonomous driving. What's less obvious, though, is the selection of features/technologies will make sense at each step along the path. Specific vehicle contenting decisions get made early in the vehicle planning process and rely on forecasting factors such as technology readiness, consumer interest, the economics in the supply base, and projected government regulations and consumer metrics. Additionally, for these technologies to be effective, often they need to be introduced in conjunction with other features and grouped in ways that are intuitive and relevant to current consumer needs.
Technical Paper

Advanced Continuous Sensing Technology for Hydraulic Brake Fluid

2022-09-19
2022-01-1185
The Continuous Fluid Level and Quality Indicator (CFLQI) technology is focused on increasing the sampling frequency of brake fluid reservoir volume and detecting specific brake fluid contaminants. CFLQI targets to improve diagnostics detection range and resulting degraded vehicle operation strategies by increasing sensitivity to brake fluid loss and the addition of a fluid quality feature. The theory of CFLQI is to improve future autonomous and highly automated vehicle performance, both of which will have reduced driver input and service schedules, by providing earlier fluid level and fluid health warnings. The two technologies selected to prove theory of operation were ultra-sonic sensor and capacitive sense element technology. Both technologies show initial capability to meet fluid sensing targets with system level ASIL D ASIC design. The CFLQI compliments and improves upon current technology of brake pad wear sensors, leak detection diagnostics and brake fluid level monitoring.
Technical Paper

Advanced Material Characterization of Hood Insulator Foams for Pedestrian Head Impact

2024-04-09
2024-01-2682
Hood insulators are widely used in automotive industry to improve noise insulation, pedestrian impact protection and to provide aesthetic appeal. They are attached below the hood panel and are often complex in shape and size. Pedestrian head impacts are highly dynamic events with a compressive strain rate experienced by the insulator exceeding 300/s. The energy generated by the impact is partly absorbed by the hood insulators thus reducing the head injury to the pedestrian. During this process, the insulator experiences multi-axial stress states. The insulators are usually made of soft multi-layered materials, such as polyurethane or fiberglass, and have a thin scrim layer on either side. These materials are foamed to their nominal thickness and are compression molded to take the required shape of the hood. During this process they undergo thickness reduction, thereby increasing their density.
Technical Paper

Age-Specific Injury Risk Curves for Distributed, Anterior Thoracic Loading of Various Sizes of Adults Based on Sternal Deflections

2016-11-07
2016-22-0001
Injury Risk Curves are developed from cadaver data for sternal deflections produced by anterior, distributed chest loads for a 25, 45, 55, 65 and 75 year-old Small Female, Mid-Size Male and Large Male based on the variations of bone strengths with age. These curves show that the risk of AIS ≥ 3 thoracic injury increases with the age of the person. This observation is consistent with NASS data of frontal accidents which shows that older unbelted drivers have a higher risk of AIS ≥ 3 chest injury than younger drivers.
Technical Paper

An Automated Procedure for Implementing Steer Input during Ditch Rollover CAE Simulation

2022-10-05
2022-28-0365
Vehicle manufacturers conduct tests to develop crash sensing system calibrations. Ditch fall-over is one of a suite of laboratory tests used to develop rollover sensing calibrations that can trigger deployment of safety devices like roof rail airbags and seat belt pretensioners. The ditch fall-over test simulates a flat road followed by a ditch on one side of the road. The vehicle heads into the ditch and the driver applies swift steer input once the ditch slope is sensed. Typically, the steer input is applied when the two down-slope wheels on the ditch side enter the ditch. Multi-Body Dynamics (MBD) software can be used for virtual simulation of these test events. Conventionally in simulations, the vehicle-model is run without steer input and the marking line crossing time is observed/manually recorded from observation of simulation video. This recorded time is used to apply the steer input and the full event is then re-simulated.
Journal Article

Analysis and Validation of Current Ripple Induced PWM Switching Noise and Vibration for Electric Vehicles

2023-05-08
2023-01-1100
Pulse Width Modulation or PWM has been widely used in traction motor control for electric propulsion systems. The associated switching noise has become one of the major NVH concerns of electric vehicles (EVs). This paper presents a multi-disciplinary study to analyze and validate current ripple induced switching noise for EV applications. First, the root cause of the switching noise is identified as high frequency ripple components superimposed on the sinusoidal three-phase current waveforms, due to PWM switching. Measured phase currents correlate well with predictions based on an analytical method. Next, the realistic ripple currents are utilized to predict the electro-magnetic dynamic forces at both the motor pole pass orders and the switching frequency plus its harmonics. Special care is taken to ensure sufficient time step resolution to capture the ripple forces at varying motor speeds.
Technical Paper

Analysis of the Event Data Recorder (EDR) Function of a GM Active Safety Control Module (EOCM3 LC)

2024-04-09
2024-01-2888
The Advanced Driver Assistance System (ADAS) is a comprehensive feature set designed to aid a driver in avoiding or reducing the severity of collisions while operating the vehicle within specified conditions. In General Motors (GM) vehicles, the primary controller for the ADAS is the Active Safety Control Module (ASCM). In the 2013 model year, GM introduced an ASCM utilizing the GM internal nomenclature of External Object Calculation Module (EOCM) in some of their vehicles produced for the North American market. Similar to the Sensing and Diagnostic Module (SDM) utilized in the restraints system, the EOCM3 LC contains an Event Data Recorder (EDR) function to capture and record information surrounding certain ADAS or Supplemental Inflatable Restraint (SIR) events. The ASCM EDR contains information from external object sensors, various chassis and powertrain control modules, and internally calculated data.
Technical Paper

Analytical Failure Modeling of Thermal Interface Material in High Voltage Battery Modules in Electric Vehicle Crash Scenario

2023-04-11
2023-01-0521
Battery Electric Vehicles (BEVs) are becoming more competitive day by day to achieve maximum peak power and energy requirement. This poses challenges to the design of Thermal Interface Material (TIM) which maintains the cell temperature and ensure retention of cell and prevent electrolyte leak under different crash loads. TIM can be in the form of adhesives, gels, gap fillers. In this paper, TIM is considered as structural, and requires design balance with respect to thermal and mechanical requirements. Improving structural strength of TIM will have negative impact on its thermal conductivity; hence due care needs to be taken to determine optimal strength that meets both structural and thermal performance. During various crash conditions, due to large inertial force of cell and module assembly, TIM is undertaking significant loads on tensile and shear directions. LS-DYNA® is used as simulation solver for performing crash loading conditions and evaluate structural integrity of TIM.
X