Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

ACuZinc™ 5 Applications in the Auto Industry

1996-02-01
960764
ACuZinc™ 5, a GM-patented, high-performance ternary zinc-copper-aluminum alloy which is suitable for manufacturing net shape die castings, plays a vital role in the success of new automotive parts and systems. The new parts were designed to meet the auto industry's higher load and safety specifications. The superior mechanical properties of ACuZinc™ make it suitable for structural applications where commercial zinc die casting alloys have been found to be inadequate. From a business viewpoint, ACuZinc™ can help in penetrating new markets by competing for cast iron, powder metal and brass applications. ACuZinc is a registered GM trademark.
Technical Paper

Formability of an Automotive Aluminum Alloy-AA5754 CC

2008-04-14
2008-01-1094
We have studied the formability of continuous strip cast (CC) AA5754 aluminum alloy for automotive applications. Strip casting technology can considerably reduce material cost compared with conventional direct chill (DC) cast aluminum sheets. However, the CC material tends to exhibit much less post-localization deformation and lower fracture strains compared with DC sheets with similar Fe content, although both alloys show similar strains for the onset of localization. Bendability of the CC alloy is also found to be inferior. The inferior behavior (post-necking and bendability) of the CC alloy can be attributed to the higher incidence of stringer-type particle distributions in the alloy. The formability of the AA5754 alloy has also been studied using two dimensional microstructure-based finite element modeling. The microstructures are represented by grains and experimentally measured particle distributions.
Technical Paper

New Binder for Casting Cores: An Industrial Application to Safety Suspension Parts

1998-02-01
981005
A new core binder system (1) was used to produce foundry cores for casting hollow aluminum suspension parts by the low pressure, gravity flow, semi-permanent mold method. These and other prototype aluminum parts made using the system demonstrate that easy core removal from complex castings, core and sand recycling, and an improved environment in the core making facilities will increase productivity, improve product quality and reduce manufacturing costs.
Technical Paper

Recyclability and Characterization of Co-Extruded Multilayer Fuel Tanks

1998-02-23
980096
The recyclability of co-extruded multilayer fuel tanks, and characterization of the materials used in their manufacture, have been investigated. The ethylene-vinyl alcohol, EvOH, copolymer barrier layer, extruded as a sandwich between two adhesive layers of a maleated linear low density polyethylene, LLDPE, is surrounded by three high density polyethylene, HDPE, layers, one of which is composed of the regrind derived from the waste generated by manufacture. Particular attention has been focused on the mechanism of adhesion between the barrier layer and the adhesive layers. Surface analysis of the in situ surfaces has confirmed the formation of chemical bonds between the two polymers. Morphological information, concerning dispersion of the barrier layer in the HDPE matrix during recycling, has been obtained by scanning (SEM) and transmission (TEM) electron microscopy techniques.
Technical Paper

Three-Dimensional Structure of Portevin-Le Chatelier Bands and Shear Bands in Strip Cast AA5754 Sheets Using Digital Image Correlation

2007-04-16
2007-01-1381
Strip cast AA5754 sheets are of interest for automotive interior panel applications. However, Portevin-Le Chatelier (PLC) bands are seen in this material and cause surface quality concerns. Moreover, shear banding is the main failure mechanism of this material. However, the relationship between PLC bands and shear bands is still controversial in the literature. In order to delineate this problem, the digital image correlation (DIC) strain mapping technique is used to explore the three-dimensional structures of PLC bands and shear bands in AA5754 sheets. Two-dimensional DIC measurements were carried out simultaneously on both of the sheet sample surfaces (front and back side) of an AA5754 tensile sample using a commercially available optical strain mapping DIC-based system (Aramis). DIC measurements were also conducted on the thickness direction. Based on the strain mapping results, the three dimensional structures of both PLC bands and shear bands are constructed.
X