Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Comparative Assessment of High Speed Rotorcraft Concepts (HSRC): Reaction Driven Stopped Rotor/Wing Versus Variable Diameter Tiltrotor

1997-10-01
975548
The objective of this paper is to illustrate the methods and tools developed to size and synthesize a stopped rotor/wing vehicle using a reaction drive system, including how this design capability is incorporated into a sizing and synthesis tool, VASCOMP II. This new capability is used to design a vehicle capable of performing a V-22 escort mission, and a sized vehicle description with performance characteristics is presented. The resulting vehicle is then compared side-by-side to a variable diameter tiltrotor designed for the same mission. Results of this analysis indicate that the reaction-driven rotor concept holds promise relative to alternative concepts, but that the variable diameter tiltrotor has several inherent performance advantages. Additionally, the stopped rotor/wing needs considerably more development to reach maturity.
Technical Paper

A Comparative Study of a Multi-Gas Generator Fan to a Turbofan Engine on a Vertical Takeoff and Landing Personal Air Vehicle

2006-08-30
2006-01-2435
This paper attempts to assess the benefits of a unique distributed propulsion concept, known as the Multi-Gas Generator Fan (MGGF) system, over conventional turbofan engines on civilian vertical takeoff and landing (VTOL) applications. The MGGF-based system has shown the potential to address the fundamental technical challenge in designing a VTOL aircraft: the significant mismatch between the power requirements at lift-off/hover and cruise. Vehicle-level performance and sizing studies were implemented using the Grumman Design 698 tilt-nacelle V/STOL aircraft as a notional personal air vehicle (PAV), subjected to hypothetical single engine failure (SEF) emergency landing requirements and PAV mission requirements.
Technical Paper

A Cycloidal Rotor and Airship System for On-Demand Hypercommuting

2016-09-20
2016-01-2026
An architecture is proposed for on-demand rapid commuting across congested-traffic areas. A lighter-than-air (LTA) vehicle provides the efficient loitering and part of the lift, while a set of cycloidal rotors provides the lift for payload as well as propulsion. This combination offers low noise and low downwash. A standardized automobile carriage is slung below the LTA, permitting driveway to driveway boarding and off-loading for a luxury automobile. The concept exploration is described, converging to the above system. The 6-DOF aerodynamic load map of the carriage is acquired using the Continuous-Rotation method in a wind tunnel. An initial design with rear ramp access is modified to have ramps at both ends. The initial design shows a divergence sped in access of 100 mph. An effort to improve the ride quality using yaw stabilizers, failed as the dynamic behavior becomes unstable. The requirements for control surfaces and instrumentation are discussed.
Technical Paper

A Dynamic Surrogate Model Technique for Power Systems Modeling and Simulation

2008-11-11
2008-01-2887
Heterogeneous physical systems can often be considered as highly complex, consisting of a large number of subsystems and components, along with the associated interactions and hierarchies amongst them. The simulation of a large-scale, complex system can be computationally expensive and the dynamic interactions may be highly nonlinear. One approach to address these challenges is to increase the computing power or resort to a distributed computing environment. An alternative to improve the simulation computational performance and efficiency is to reduce CPU required time through the application of surrogate models. Surrogate modeling techniques for dynamic simulation models can be developed based on Recurrent Neural Networks (RNN).This study will present a method to improve the overall speed of a multi-physics time-domain simulation of a complex naval system using a surrogate modeling technique.
Technical Paper

A General Aviation Aircraft Retrofit with a PEM Fuel Cell

2008-11-11
2008-01-2914
As gas prices and climate change become the preeminent issues of today, more research effort is being directed towards the development of cheaper and cleaner alternative energy sources. These efforts have been further complemented with research into the applicability of these sources to air, land and sea borne vehicles. In this report a notional C-172R general aviation aircraft is retrofitted with a PEM power plant as a case-study. Lower bounds for useful load and range are set in such a way that the results can be useful in determining how much improvement in the technology would be required to power a useful general aviation vehicle. It is seen that even at the predicted 2015 fuel cell technology level (per US Department of Energy projections), PEM systems would still be infeasible for this vehicle due to low specific power. Further investigation revealed that a PEM-battery hybrid system had better chances of feasibility.
Technical Paper

A General Effectiveness Methodology for Aircraft Survivability Assessments

1987-10-01
871905
The quantification of aircraft survivability in modern battlefield environments is a complex mathematical problem. In general, consideration must be given to the quantification of aircraft vulnerability to individual weapon systems, single encounter aircraft survivability, and the mathematical mapping of single encounter aircraft survivability into mission attrition. A methodology for quantifying the impacts of electronic warfare (EW) upon aircraft survivability is realized by the General Effectiveness Methodology (GEM) which is based upon a hierarchy of computer models. This paper describes this hierarchy of computer simulation tools which extensively employs probability theory to estimate the various engagement events such as aircraft detection, acquisition, missile launch, missile intercept, and probability of aircraft kill.
Technical Paper

A Generalized Model for Vehicle Thermodynamic Loss Management and Technology Concept Evaluation

2000-10-10
2000-01-5562
The objective of this paper is to develop a generalized loss management model to account for the usage of thermodynamic work potential in vehicles of any type. The key to accomplishing this is creation of a differential representation for vehicle loss as a function of operating condition. This differential model is then integrated through time to obtain an analytical estimate for total usage (and loss) of work potential consumed by each loss mechanism present during vehicle operation. The end result of this analysis is a better understanding of how the work potential initially present in the fuel, batteries, etc. is partitioned amongst all losses relevant to the vehicle's operation. The loss partitioning estimated from this loss management model can be used in conjunction with cost accounting systems to gain a better understanding of underlying drivers on vehicle manufacturing and operating costs.
Technical Paper

A Hydrogen Sulfide/Air Solid Oxide Fuel Cell

1992-08-03
929164
A fuel cell which uses pure hydrogen sulfide as fuel and a solid electrolyte of ceria stabilized with yttria (YSC) has been proposed, with the configuration H2S, Pt/YSC/Pt, O2 (air), operating at temperatures of 600 to 800° C. Initial experiments will use platinum electrodes, with subsequent runs using various perovskite type electrodes. The YSC electrolye system exhibits better ionic conductivity than the more familiar YSZ electrolytes, and thus the fuel cell will operate at a lower temperature range. Cell component manufacture, cell experiments, and analytical techniques are discussed.
Technical Paper

A Mean Value Based Sizing and Simulation Model of a Hydrogen Fueled Spark-Ignition Internal Combustion Engine

2007-09-17
2007-01-3789
A mean value based sizing and simulation model has been developed for use in the conceptual design and sizing of hydrogen fueled spark-ignition internal combustion engines (HICE) in the aerospace industry, here ‘mean value’ includes mean effective pressure (MEP), mean piston speed, mean specific power, etc. This model is developed since there is currently no such model readily available for this purpose. When sizing the HICE, statistical data and common practice for gasoline internal combustion engines (GICE) are used to obtain preliminary sizes of the HICE, such as total cylinder volume, bore and stroke; to capture the effect of low volumetric efficiency, the preliminary results are adjusted by a volumetric correction factor until the cycle parameters of HICE are reasonable. A non-dimensional combustion model with hydrogen as fuel is incorporated with existing GICE methods. With this combustion model, the high combustion temperature and high combustion pressure are captured.
Technical Paper

A Methodology for the Prediction of Rotor Blade Ice Formation and Shedding

2011-06-13
2011-38-0090
An integrated approach for modeling the ice accretion and shedding of ice on helicopter rotors is presented. A modular framework is used that includes state of the art computational fluid dynamics, computational structural dynamics, rotor trim, ice accretion, and shedding tools. Results are presented for performance degradation due to icing, collection efficiency, surface temperature and water film properties associated with runback-refreeze phenomena, and shedding. Comparisons with other published simulations and test data are given.
Technical Paper

A Model for Water Consumption in Vehicle Use within Urban Regions

2011-04-12
2011-01-1152
The recent development of electric vehicles creates a new area of interest regarding their potential impacts on natural resource and energy networks. Water consumption is of particular interest, as water scarcity becomes a growing problem in many regions of the world. Water usage can be traced to the production of gasoline, as well as electricity, for regular operation of these vehicles. This paper focuses on the development of a framework to analyze the amount of water consumed in the operation of both conventional and electric vehicles. Using the Systems Modeling Language, a model was developed based on the water consumed directly in energy generation and processing as well as water consumed in obtaining and processing a vehicle's fuels. This model and framework will use the above water consumption breakdown to examine conventional and electric vehicles in metropolitan Atlanta to assess their impacts on that and other urban networks.
Journal Article

A Novel Approach to Assess Diesel Spray Models using Joint Visible and X-Ray Liquid Extinction Measurements

2015-04-14
2015-01-0941
Spray processes, such as primary breakup, play an important role for subsequent combustion processes and emissions formation. Accurate modeling of these spray physics is therefore key to ensure faithful representation of both the global and local characteristics of the spray. However, the governing physical mechanisms underlying primary breakup in fuel sprays are still not known. Several theories have been proposed and incorporated into different engineering models for the primary breakup of fuel sprays, with the most widely employed models following an approach based on aerodynamically-induced breakup, or more recently, based on liquid turbulence-induced breakup. However, a complete validation of these breakup models and theories is lacking since no existing measurements have yielded the joint liquid mass and drop size distribution needed to fully define the spray, especially in the near-nozzle region.
Technical Paper

A Parametric Design Environment for Including Signatures Analysis in Conceptual Design

2000-10-10
2000-01-5564
System effectiveness has become the prime metric for the evaluation of military aircraft. As such, it is the designer's goal to maximize system effectiveness. Industry documents indicate that all future military aircraft will incorporate signature reduction as an attempt to improve system effectiveness. Today's operating environments demand low observable aircraft which are able to reliably eliminate valuable, time critical targets. Thus, it is desirable to be able to evaluate the signatures of a vehicle, as well as the influence of signatures on the systems effectiveness of a vehicle. Previous studies have shown that shaping of the vehicle is one of the most important contributors to radar cross section and must be considered from the very beginning of the design process. This research strives to meet these needs by developing a parametric geometry radar cross section prediction tool.
Technical Paper

A Probabilistic Approach to Multivariate Constrained Robust Design Simulation

1997-10-01
975508
Several approaches to robust design have been proposed in the past. Only few acknowledged the paradigm shift from performance based design to design for cost. The incorporation of economics in the design process, however, makes a probabilistic approach to design necessary, due to the inherent ambiguity of assumptions and requirements as well as the operating environment of future aircraft. The approach previously proposed by the authors, linking Response Surface Methodology with Monte Carlo Simulations, has revealed itself to be cumbersome and at times impractical for multi-constraint, multi-objective problems. In addition, prediction accuracy problems were observed for certain scenarios that could not easily be resolved. Hence, this paper proposes an alternate approach to probabilistic design, which is based on a Fast Probability Integration technique.
Technical Paper

A Probabilistic Design Methodology for Commercial Aircraft Engine Cycle Selection

1998-09-28
985510
The objective of this paper is to examine ways in which to implement probabilistic design methods in the aircraft engine preliminary design process. Specifically, the focus is on analytically determining the impact of uncertainty in engine component performance on the overall performance of a notional large commercial transport, particularly the impact on design range, fuel burn, and engine weight. The emphasis is twofold: first is to find ways to reduce the impact of this uncertainty through appropriate engine cycle selections, and second is on finding ways to leverage existing design margin to squeeze more performance out of current technology. One of the fundamental results shown herein is that uncertainty in component performance has a significant impact on the overall aircraft performance (it is on the same order of magnitude as the impact of the cycle itself).
Journal Article

A Spline-Based Modeling Algorithm for Application to Aerodynamic Shape Optimization Based on CFD Analysis

2017-03-28
2017-01-1510
In early phases of conceptual design stages for developing a new car in the modern automobile industry, the lack of systematic methodology to efficiently converge to an agreement between the aesthetics and aerodynamic performance tremendously increases budget and time. During these procedures, one of the most important tasks is to create geometric information which is versatilely morphable upon the demands of both of stylists and engineers. In this perspective, this paper proposes a Spline-based Modeling Algorithm (SMA) to implement into performing aerodynamic design optimization research based on CFD analysis. Once a 3-perspective schematic of a car is given, SMA regresses the backbone boundary lines by using optimum polynomial interpolation methods with the best goodness of fit, eventually reconstructing the 3D shape by linearly interpolating from the extracted boundaries minimizing loss of important geometric features.
Technical Paper

A System Dynamics Approach for Dynamic Uncertainty Assessment in a PAV Design Environment

2006-08-30
2006-01-2434
One the most critical barriers to the advancement of Personal Air Vehicles in today's market environment is that the technological capabilities can never seem to outweigh the risks associated with financing such an endeavor. To address such a need, a system dynamics approach with the capability to model the uncertainties in the supply chain is presented in this paper. The overall modeling framework is first presented and the modeling process of the various relevant elements, such as demand prediction and manufacturer analysis, is then described. The aim of this research is ultimately to assess the viability of a next-generation aircraft program beyond the static confines of a net present value approach, through the inclusion of dynamic events and uncertainties that can occur throughout the life-cycle of the aircraft.
Technical Paper

A Technique for Testing and Evaluation of Aircraft Flight Performance During Early Design Phases

1997-10-01
975541
A technique is proposed for examining complex behaviors in the “pilot - vehicle - operational conditions” system using an autonomous situational model of flight. The goal is to identify potentially critical flight situations in the system behavior early in the design process. An exhaustive set of flight scenarios can be constructed and modeled on a computer by the designer in accordance with test certification requirements or other inputs. Distinguishing features of the technique include the autonomy of experimentation (the pilot and a flight simulator are not involved) and easy planning and quick modeling of complex multi-factor flight cases. An example of mapping airworthiness requirements into formal scenarios is presented. Simulation results for various flight situations and aircraft types are also demonstrated.
Journal Article

Accounting for the Duration of Analyses in Design Process Decisions

2010-04-12
2010-01-0908
Although the design phase can account for a sizable amount of the resources consumed during the product realization process, the time and costs associated with the design process are often neglected when making design decisions. To investigate this issue, we define a process-centric decision model in which the design-phase consumption of resources, such as time and money, is explicitly modeled. While it is clear that the utility of a design is almost always directly impacted by the monetary costs of the design process, our decision model also accounts for the fact that the profit earned by a product depends strongly on its launch date. The decision model allows us thus to consider the trade-off between the time necessary for analysis and the improvement in product quality that results from the analysis. The decision model is sufficiently generic that almost any set of beliefs about the alternatives or analyses, as well as any utility-based preference structure can be modeled.
Technical Paper

Active Anti-lock Brake System for Low Powered Vehicles Using Cable-Type Brakes

2010-04-12
2010-01-0076
This paper presents a study of the effects of anti-lock brakes on a vehicle with cable-type brakes with respect to stopping distance and vehicle control. While ABS is common on motorcycles and some hydraulic braking systems for mopeds, little research has been done on the use of anti-locks for low-powered vehicles using non-hydraulic brakes. A bicycle with cable-type brakes has been retrofitted with an active ABS. Experiments were carried out to compare the braking distance when the ABS was activated and deactivated. The study found that ABS did not sacrifice braking distance while improving vehicle control.
X