Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparative Assessment of High Speed Rotorcraft Concepts (HSRC): Reaction Driven Stopped Rotor/Wing Versus Variable Diameter Tiltrotor

1997-10-01
975548
The objective of this paper is to illustrate the methods and tools developed to size and synthesize a stopped rotor/wing vehicle using a reaction drive system, including how this design capability is incorporated into a sizing and synthesis tool, VASCOMP II. This new capability is used to design a vehicle capable of performing a V-22 escort mission, and a sized vehicle description with performance characteristics is presented. The resulting vehicle is then compared side-by-side to a variable diameter tiltrotor designed for the same mission. Results of this analysis indicate that the reaction-driven rotor concept holds promise relative to alternative concepts, but that the variable diameter tiltrotor has several inherent performance advantages. Additionally, the stopped rotor/wing needs considerably more development to reach maturity.
Technical Paper

A Comparative Study of a Multi-Gas Generator Fan to a Turbofan Engine on a Vertical Takeoff and Landing Personal Air Vehicle

2006-08-30
2006-01-2435
This paper attempts to assess the benefits of a unique distributed propulsion concept, known as the Multi-Gas Generator Fan (MGGF) system, over conventional turbofan engines on civilian vertical takeoff and landing (VTOL) applications. The MGGF-based system has shown the potential to address the fundamental technical challenge in designing a VTOL aircraft: the significant mismatch between the power requirements at lift-off/hover and cruise. Vehicle-level performance and sizing studies were implemented using the Grumman Design 698 tilt-nacelle V/STOL aircraft as a notional personal air vehicle (PAV), subjected to hypothetical single engine failure (SEF) emergency landing requirements and PAV mission requirements.
Technical Paper

A General Aviation Aircraft Retrofit with a PEM Fuel Cell

2008-11-11
2008-01-2914
As gas prices and climate change become the preeminent issues of today, more research effort is being directed towards the development of cheaper and cleaner alternative energy sources. These efforts have been further complemented with research into the applicability of these sources to air, land and sea borne vehicles. In this report a notional C-172R general aviation aircraft is retrofitted with a PEM power plant as a case-study. Lower bounds for useful load and range are set in such a way that the results can be useful in determining how much improvement in the technology would be required to power a useful general aviation vehicle. It is seen that even at the predicted 2015 fuel cell technology level (per US Department of Energy projections), PEM systems would still be infeasible for this vehicle due to low specific power. Further investigation revealed that a PEM-battery hybrid system had better chances of feasibility.
Technical Paper

A General Effectiveness Methodology for Aircraft Survivability Assessments

1987-10-01
871905
The quantification of aircraft survivability in modern battlefield environments is a complex mathematical problem. In general, consideration must be given to the quantification of aircraft vulnerability to individual weapon systems, single encounter aircraft survivability, and the mathematical mapping of single encounter aircraft survivability into mission attrition. A methodology for quantifying the impacts of electronic warfare (EW) upon aircraft survivability is realized by the General Effectiveness Methodology (GEM) which is based upon a hierarchy of computer models. This paper describes this hierarchy of computer simulation tools which extensively employs probability theory to estimate the various engagement events such as aircraft detection, acquisition, missile launch, missile intercept, and probability of aircraft kill.
Technical Paper

A Hydrogen Sulfide/Air Solid Oxide Fuel Cell

1992-08-03
929164
A fuel cell which uses pure hydrogen sulfide as fuel and a solid electrolyte of ceria stabilized with yttria (YSC) has been proposed, with the configuration H2S, Pt/YSC/Pt, O2 (air), operating at temperatures of 600 to 800° C. Initial experiments will use platinum electrodes, with subsequent runs using various perovskite type electrodes. The YSC electrolye system exhibits better ionic conductivity than the more familiar YSZ electrolytes, and thus the fuel cell will operate at a lower temperature range. Cell component manufacture, cell experiments, and analytical techniques are discussed.
Technical Paper

A Model for Water Consumption in Vehicle Use within Urban Regions

2011-04-12
2011-01-1152
The recent development of electric vehicles creates a new area of interest regarding their potential impacts on natural resource and energy networks. Water consumption is of particular interest, as water scarcity becomes a growing problem in many regions of the world. Water usage can be traced to the production of gasoline, as well as electricity, for regular operation of these vehicles. This paper focuses on the development of a framework to analyze the amount of water consumed in the operation of both conventional and electric vehicles. Using the Systems Modeling Language, a model was developed based on the water consumed directly in energy generation and processing as well as water consumed in obtaining and processing a vehicle's fuels. This model and framework will use the above water consumption breakdown to examine conventional and electric vehicles in metropolitan Atlanta to assess their impacts on that and other urban networks.
Technical Paper

A Parametric Design Environment for Including Signatures Analysis in Conceptual Design

2000-10-10
2000-01-5564
System effectiveness has become the prime metric for the evaluation of military aircraft. As such, it is the designer's goal to maximize system effectiveness. Industry documents indicate that all future military aircraft will incorporate signature reduction as an attempt to improve system effectiveness. Today's operating environments demand low observable aircraft which are able to reliably eliminate valuable, time critical targets. Thus, it is desirable to be able to evaluate the signatures of a vehicle, as well as the influence of signatures on the systems effectiveness of a vehicle. Previous studies have shown that shaping of the vehicle is one of the most important contributors to radar cross section and must be considered from the very beginning of the design process. This research strives to meet these needs by developing a parametric geometry radar cross section prediction tool.
Technical Paper

A Probabilistic Approach to Multivariate Constrained Robust Design Simulation

1997-10-01
975508
Several approaches to robust design have been proposed in the past. Only few acknowledged the paradigm shift from performance based design to design for cost. The incorporation of economics in the design process, however, makes a probabilistic approach to design necessary, due to the inherent ambiguity of assumptions and requirements as well as the operating environment of future aircraft. The approach previously proposed by the authors, linking Response Surface Methodology with Monte Carlo Simulations, has revealed itself to be cumbersome and at times impractical for multi-constraint, multi-objective problems. In addition, prediction accuracy problems were observed for certain scenarios that could not easily be resolved. Hence, this paper proposes an alternate approach to probabilistic design, which is based on a Fast Probability Integration technique.
Technical Paper

A Probabilistic Design Methodology for Commercial Aircraft Engine Cycle Selection

1998-09-28
985510
The objective of this paper is to examine ways in which to implement probabilistic design methods in the aircraft engine preliminary design process. Specifically, the focus is on analytically determining the impact of uncertainty in engine component performance on the overall performance of a notional large commercial transport, particularly the impact on design range, fuel burn, and engine weight. The emphasis is twofold: first is to find ways to reduce the impact of this uncertainty through appropriate engine cycle selections, and second is on finding ways to leverage existing design margin to squeeze more performance out of current technology. One of the fundamental results shown herein is that uncertainty in component performance has a significant impact on the overall aircraft performance (it is on the same order of magnitude as the impact of the cycle itself).
Technical Paper

A System Dynamics Approach for Dynamic Uncertainty Assessment in a PAV Design Environment

2006-08-30
2006-01-2434
One the most critical barriers to the advancement of Personal Air Vehicles in today's market environment is that the technological capabilities can never seem to outweigh the risks associated with financing such an endeavor. To address such a need, a system dynamics approach with the capability to model the uncertainties in the supply chain is presented in this paper. The overall modeling framework is first presented and the modeling process of the various relevant elements, such as demand prediction and manufacturer analysis, is then described. The aim of this research is ultimately to assess the viability of a next-generation aircraft program beyond the static confines of a net present value approach, through the inclusion of dynamic events and uncertainties that can occur throughout the life-cycle of the aircraft.
Technical Paper

A Technique for Testing and Evaluation of Aircraft Flight Performance During Early Design Phases

1997-10-01
975541
A technique is proposed for examining complex behaviors in the “pilot - vehicle - operational conditions” system using an autonomous situational model of flight. The goal is to identify potentially critical flight situations in the system behavior early in the design process. An exhaustive set of flight scenarios can be constructed and modeled on a computer by the designer in accordance with test certification requirements or other inputs. Distinguishing features of the technique include the autonomy of experimentation (the pilot and a flight simulator are not involved) and easy planning and quick modeling of complex multi-factor flight cases. An example of mapping airworthiness requirements into formal scenarios is presented. Simulation results for various flight situations and aircraft types are also demonstrated.
Technical Paper

Aerodynamic Load Maps of Vehicle Shapes at Arbitrary Attitude

2015-09-15
2015-01-2574
The interest in flying cars comes with the question of characterizing aerodynamic loads on shapes that go beyond traditional aircraft shapes. When carried as slung loads under aircraft, vehicles can encounter severe aerodynamic loads, which may also cause them to go into divergent oscillations that can threaten the vehicle and aircraft. Slung loads can encounter the wind at arbitrary attitudes. Flight test certification for every vehicle-aircraft combination is prohibitive. Characterizing the aerodynamic loads with sufficient resolution for use in dynamic simulation, has in the past been extremely arduous. Sharp changes that drive instabilities arise over small ranges of yaw and pitch. With the Continuous Rotation technique developed by our group, aerodynamic load characterization is viable and efficient. With two well-chosen attitude sweeps and appropriate transformations, the entire 6-DOF load map can be obtained, for several rates.
Technical Paper

Aerodynamic Loads on Arbitrary Configurations: Measurements, Computations and Geometric Modeling

2017-09-19
2017-01-2162
This paper brings together three special aspects of bluff-body aeromechanics. Experiments using our Continuous Rotation method have developed a knowledge base on the 6-degree-of-freedom aerodynamic loads on over 50 different configurations including parametric variations of canonical shapes, and several practical shapes of interest. Models are mounted on a rod attached to a stepper motor placed on a 6-DOF load cell in a low speed wind tunnel. The aerodynamic loads are ensemble-averaged as phase-resolved azimuthal variations. The load component variations are obtained as discrete Fourier series for each load component versus azimuth about each of 3 primary axes. This capability has enabled aeromechanical simulation of the dynamics of roadable vehicles slung below rotorcraft. In this paper, we explore the genesis of the loads on a CONEX model, as well as models of a short and long container, using the “ROTCFD” family of unstructured Navier-Stokes solvers.
Technical Paper

Aerothermodynamic Design of Supersonic Channel Airfoils for Drag Reduction

1997-10-01
975572
A supersonic channel airfoil (SCA) concept that can be applied to the leading edges of wings, tails, fins, struts, and other appendages of aircraft, atmospheric entry vehicles and missiles in supersonic flight for drag reduction is described. It is designed to be beneficial at conditions in which the leading edge is significantly blunted and the Mach number normal to the leading edge is supersonic. The concept is found to result in significantly reduced wave drag and total drag (including skin friction drag) and significantly increased L/D. While this reduction over varying flight conditions has been quantified, some leading edge geometries result in adverse increases in peak heat transfer rates. To evaluate the effectiveness of SCAs in reducing drag without paying any penalties in other areas like lifting capacity, heating rates or enclosed volume, the design space was studied in greater detail using MDO methods.
Technical Paper

Aircraft Control Using Stagnation Point Displacement

1997-10-01
975590
A Stagnation Point Actuator is used to control the lateral dynamics of vortices generated over a sharp-pointed forebody, at high angles of attack, and the resulting rolling moment is studied. Effective roll control is demonstrated, including the ability to suppress the wing rock phenomenon. Piecewise-linear transfer functions are developed from experimental data for the changes in roll moment and pressure difference with actuator frequency content. These transfer functions are reduced to compact form in the frequency domain, and then to a time-domain model using 2 gains and 2 time scales. The roll response is classified according to angle of attack range. Some long time scales are observed in the surface pressure, velocity field and rolling moment, making the response relatively insensitive to speed. Thus over substantial speed ranges, linear transfer functions are shown to effectively describe the roll response to motion of the Stagnation Point Actuator.
Technical Paper

An Application of a Technology Impact Forecasting (TIF) Method to an Uninhabited Combat Aerial Vehicle

1999-10-19
1999-01-5633
In today’s atmosphere of lower U.S. defense spending and reduced research budgets, determining how to allocate resources for research and design has become a critical and challenging task. In the area of aircraft design there are many promising technologies to be explored, yet limited funds with which to explore them. In addition, issues concerning uncertainty in technology readiness as well as the quantification of the impact of a technology (or combinations of technologies), are of key importance during the design process. The methodology presented in this paper details a comprehensive and structured process in which to explore the effects of technology for a given baseline aircraft. This process, called Technology Impact Forecasting (TIF), involves the creation of a forecasting environment for use in conjunction with defined technology scenarios. The advantages and limitations of the method will be discussed, as well its place in an overall methodology used for technology infusion.
Technical Paper

An Assessment of a Reaction Driven Stopped Rotor/Wing Using Circulation Control in Forward Flight

1996-10-01
965612
The desire of achieving faster cruise speed for rotorcraft vehicles has been around since the inception of the helicopter. Many unconventional concepts have been considered and researched such as the advanced tilt rotor with canards, the tilt-wing, the folding tiltrotor, the coaxial propfan/folding tiltrotor, the variable diameter tiltrotor, and the stopped rotor/wing concept, in order to fulfill this goal. The most notable program which addressed the technology challenges of accomplishing a high speed civil transport mission is the High Speed Rotorcraft Concept (HSRC) program. Among the long list of potential configurations to fulfill the HSRC intended mission, the stopped rotor/wing is the least investigated due to the fact that the existing rotorcraft synthesis codes cannot handle this type of vehicle. In order to develop such a tool, a designer must understand the physics behind this unique concept.
Technical Paper

An Optical and Numerical Characterization of Directly Injected Compressed Natural Gas Jet Development at Engine-Relevant Conditions

2019-04-02
2019-01-0294
Compressed natural gas (CNG) is an attractive, alternative fuel for spark-ignited (SI), internal combustion (IC) engines due to its high octane rating, and low energy-specific CO2 emissions compared with gasoline. Directly-injected (DI) CNG in SI engines has the potential to dramatically decrease vehicles’ carbon emissions; however, optimization of DI CNG fueling systems requires a thorough understanding of the behavior of CNG jets in an engine environment. This paper therefore presents an experimental and modeling study of DI gaseous jets, using methane as a surrogate for CNG. Experiments are conducted in a non-reacting, constant volume chamber (CVC) using prototype injector hardware at conditions relevant to modern DI engines. The schlieren imaging technique is employed to investigate how the extent of methane jets is impacted by changing thermodynamic conditions in the fuel rail and chamber.
Technical Paper

Analysis of Aerobatic Flight Safety Using Autonomous Modeling and Simulation

2000-04-11
2000-01-2100
An affordable technique is proposed for fast quantitative analysis of aerobatics and other complex flight domains of highly maneuverable aircraft. A generalized autonomous situational model of the “pilot (automaton) – vehicle – operational environment” system is employed as a “virtual test article”. Using this technique, a systematic knowledge of the system behavior in aerobatic flight can be generated on a computer, much faster than real time. This information can be analyzed via a set of knowledge mapping formats using a 3-D graphics visualization tool. Piloting and programming skills are not required in this process. Possible applications include: aircraft design and education, applied aerodynamics, flight control systems design, planning and rehearsal of flight test and display programs, investigation of aerobatics-related flight accidents and incidents, physics-based pilot training, research into new maneuvers, autonomous flight, and onboard AI.
Technical Paper

Analysis of Tiltwing Aircraft Configuration Potential

1996-11-18
962290
This paper outlines work performed by the Aeronautical Systems Division of the Aerospace and Transportation Laboratory at the Georgia Tech Research Institute (GTRI). The paper provides limited, but pertinent information relative to the technical viability of a tiltwing configurations as civil powered-lift aircraft. Emphasis has been placed on identifying the complexity differences with tiltrotor and helicopter configurations. Complexity differences normally impact both acquisition and/or operating and support costs, although specific cost estimates are not presented.
X