Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparative Study of a Multi-Gas Generator Fan to a Turbofan Engine on a Vertical Takeoff and Landing Personal Air Vehicle

2006-08-30
2006-01-2435
This paper attempts to assess the benefits of a unique distributed propulsion concept, known as the Multi-Gas Generator Fan (MGGF) system, over conventional turbofan engines on civilian vertical takeoff and landing (VTOL) applications. The MGGF-based system has shown the potential to address the fundamental technical challenge in designing a VTOL aircraft: the significant mismatch between the power requirements at lift-off/hover and cruise. Vehicle-level performance and sizing studies were implemented using the Grumman Design 698 tilt-nacelle V/STOL aircraft as a notional personal air vehicle (PAV), subjected to hypothetical single engine failure (SEF) emergency landing requirements and PAV mission requirements.
Technical Paper

A General Aviation Aircraft Retrofit with a PEM Fuel Cell

2008-11-11
2008-01-2914
As gas prices and climate change become the preeminent issues of today, more research effort is being directed towards the development of cheaper and cleaner alternative energy sources. These efforts have been further complemented with research into the applicability of these sources to air, land and sea borne vehicles. In this report a notional C-172R general aviation aircraft is retrofitted with a PEM power plant as a case-study. Lower bounds for useful load and range are set in such a way that the results can be useful in determining how much improvement in the technology would be required to power a useful general aviation vehicle. It is seen that even at the predicted 2015 fuel cell technology level (per US Department of Energy projections), PEM systems would still be infeasible for this vehicle due to low specific power. Further investigation revealed that a PEM-battery hybrid system had better chances of feasibility.
Technical Paper

A Hydrogen Sulfide/Air Solid Oxide Fuel Cell

1992-08-03
929164
A fuel cell which uses pure hydrogen sulfide as fuel and a solid electrolyte of ceria stabilized with yttria (YSC) has been proposed, with the configuration H2S, Pt/YSC/Pt, O2 (air), operating at temperatures of 600 to 800° C. Initial experiments will use platinum electrodes, with subsequent runs using various perovskite type electrodes. The YSC electrolye system exhibits better ionic conductivity than the more familiar YSZ electrolytes, and thus the fuel cell will operate at a lower temperature range. Cell component manufacture, cell experiments, and analytical techniques are discussed.
Technical Paper

A Model for Water Consumption in Vehicle Use within Urban Regions

2011-04-12
2011-01-1152
The recent development of electric vehicles creates a new area of interest regarding their potential impacts on natural resource and energy networks. Water consumption is of particular interest, as water scarcity becomes a growing problem in many regions of the world. Water usage can be traced to the production of gasoline, as well as electricity, for regular operation of these vehicles. This paper focuses on the development of a framework to analyze the amount of water consumed in the operation of both conventional and electric vehicles. Using the Systems Modeling Language, a model was developed based on the water consumed directly in energy generation and processing as well as water consumed in obtaining and processing a vehicle's fuels. This model and framework will use the above water consumption breakdown to examine conventional and electric vehicles in metropolitan Atlanta to assess their impacts on that and other urban networks.
Journal Article

A Novel Approach to Assess Diesel Spray Models using Joint Visible and X-Ray Liquid Extinction Measurements

2015-04-14
2015-01-0941
Spray processes, such as primary breakup, play an important role for subsequent combustion processes and emissions formation. Accurate modeling of these spray physics is therefore key to ensure faithful representation of both the global and local characteristics of the spray. However, the governing physical mechanisms underlying primary breakup in fuel sprays are still not known. Several theories have been proposed and incorporated into different engineering models for the primary breakup of fuel sprays, with the most widely employed models following an approach based on aerodynamically-induced breakup, or more recently, based on liquid turbulence-induced breakup. However, a complete validation of these breakup models and theories is lacking since no existing measurements have yielded the joint liquid mass and drop size distribution needed to fully define the spray, especially in the near-nozzle region.
Technical Paper

Activity Based Approach to Manufacturing Systems Modeling

2010-04-12
2010-01-0277
This paper looks at a method for decomposing a manufactured product into what is called an “activity space.” The method uses an activity based costing scheme to structure the model and organize the information. It is discussed how the activity space is used to perform sustainability assessments of a manufactured product and the manufacturing process from different viewpoints and perspectives. The way in which the activity space is used to perform an assessment from several viewpoints is discussed.
Technical Paper

An Optical and Numerical Characterization of Directly Injected Compressed Natural Gas Jet Development at Engine-Relevant Conditions

2019-04-02
2019-01-0294
Compressed natural gas (CNG) is an attractive, alternative fuel for spark-ignited (SI), internal combustion (IC) engines due to its high octane rating, and low energy-specific CO2 emissions compared with gasoline. Directly-injected (DI) CNG in SI engines has the potential to dramatically decrease vehicles’ carbon emissions; however, optimization of DI CNG fueling systems requires a thorough understanding of the behavior of CNG jets in an engine environment. This paper therefore presents an experimental and modeling study of DI gaseous jets, using methane as a surrogate for CNG. Experiments are conducted in a non-reacting, constant volume chamber (CVC) using prototype injector hardware at conditions relevant to modern DI engines. The schlieren imaging technique is employed to investigate how the extent of methane jets is impacted by changing thermodynamic conditions in the fuel rail and chamber.
Journal Article

Backward-Looking Simulation of the Toyota Prius and General Motors Two-Mode Power-Split HEV Powertrains

2011-04-12
2011-01-0948
This paper presents a comparative analysis of two different power-split hybrid-electric vehicle (HEV) powertrains using backward-looking simulations. Compared are the front-wheel drive (FWD) Toyota Hybrid System II (THS-II) and the FWD General Motors Allison Hybrid System II (GM AHS-II). The Toyota system employs a one-mode electrically variable transmission (EVT), while the GM system employs a two-mode EVT. Both powertrains are modeled with the same assumed mid-size sedan chassis parameters. Each design employs their native internal combustion (IC) engine because the transmission's characteristic ratios are designed for the respective brake specific fuel consumption (BSFC) maps. Due to the similarities (e.g., power, torque, displacement, and thermal efficiency) between the two IC engines, their fuel consumption and performance differences are neglected in this comparison.
Technical Paper

Control of PHEV and HEV Parallel Powertrains Using a Sequential Linearization Algorithm

2015-04-14
2015-01-1219
Using measurable physical input variables, an implementable control algorithm for parallel architecture plug-in and non-plug-in hybrid electric vehicle (PHEV and HEV) powertrains is presented. The control of the electric drive is based on an algebraic mapping of the accelerator pedal position, the battery state-of-charge (SOC), and the vehicle velocity into a motor controller input torque command. This mapping is developed using a sequential linearization control (SLC) methodology. The internal combustion engine (ICE) control uses a modified accelerator pedal to throttle plate angle using an adjustable gain parameter that, in turn, determines the sustained battery SOC. Searches over an admissible control space or the use of pre-defined look-up tables are thus avoided. Actual on-road results for a Ford Explorer with a through-the-road (TTR) hybrid powertrain using this control methodology are presented.
Technical Paper

Design Optimization of a Plug-In Hybrid Electric Vehicle

2007-04-16
2007-01-1545
A plug-in hybrid electric vehicle (PHEV) design with design parameters electric motor size, engine size, battery capacity, and battery chemistry type, is optimized with minimum cost as a measure of merit. The PHEV is required to meet a fixed set of performance constraints consisting of 0-60 mph acceleration, 50-70 mph acceleration, 0-30 mph acceleration in all electric operation, top speed, grade ability, and all electric range. The optimization is carried out for values of all electric range of 10, 20, and 40 miles. The social and economic impacts of the optimum designs in terms of reduced gasoline consumption and carbon emissions reduction are calculated. Argonne National Laboratory's Powertrain Systems Analysis Toolkit is used to simulate the performance and fuel economy of the PHEV designs. The costs of different PHEV components and the present value of battery replacements over the vehicle's life are used to determine the design's drivetrain cost.
Technical Paper

Design and Fabrication of Composite Attach Fitting for Satellite Launch Vehicle

1998-06-02
981837
Compressive load capacity of composite lattice structures are studied. The objective of this research is to investigate the buckling strength of composite lattice structures and to design the most weight efficient structure with the highest buckling load. Buckling strength of both the composite lattice cylindrical and conical shells under axial compressive loads are examined. The main emphasis is placed on the effects of geometric constraints and the optimal design of the structures. In this research, various constraints are studied and the optimal structure which gives the highest strength to weight ratio is obtained. Moreover, these structures can be constructed by filament winding, the manufacturing process can be automated, and the costs can be greatly reduced.
Journal Article

Effects of End-of-Injection Transients on Combustion Recession in Diesel Sprays

2016-04-05
2016-01-0745
End-of-injection transients have recently been shown to be important for combustion and emissions outcomes in diesel engines. The objective of this work is to develop an understanding of the coupling between end-of-injection transients and the propensity for second-stage ignition in mixtures upstream of the lifted diesel flame, or combustion recession. An injection system capable of varying the end-of-injection transient was developed to study single fuel sprays in a newly commissioned optically-accessible spray chamber under a range of ambient conditions. Simultaneous high-speed optical diagnostics, namely schlieren, OH* chemiluminescence, and broadband luminosity, were used to characterize the spatial and temporal development of combustion recession after the end of injection.
Technical Paper

Energy Consumption Test Methods and Results for Servo-Pump Continuously Variable Transmission Control System

2005-10-24
2005-01-3782
Test methods and data acquisition system specifications are described for measurements of the energy consumption of the control system of a servo-pump continuously variable transmission (CVT). Dynamic measurements of the power consumption of the servo-pump CVT control system show that the control system draws approximately 18.9 W-hrs of electrical energy over the HWFET cycle and 13.6 W-hrs over the 505 cycle. Sample results are presented of the dynamic power consumption of the servo-pump system under drive cycle conditions. Steady state measurements of the control power draw of the servo-pump CVT show a peak power consumption of 271 W, including lubrication power. The drive-cycle averaged and steady state energy consumption of the servo-pump CVT are compared to conventional CVT pump technologies.
Technical Paper

Engineering a Space Based Construction Robot

2005-10-03
2005-01-3406
This paper describes a machine to quarry construction material, sinter walls, and assemble future space station modules. In prior work, we explored the solar energy requirements to build a 50m diameter, 50m high, cylindrical module out of pulverized rock from a Near-Earth Object, using tailored radio wave fields. In this paper, we describe the issues in the conceptual design of the robotic construction machines. The 4-legged Rock breaker is designed to fit the payload bay of a modern heavy-lift booster to reach Low Earth Orbit, and primary solar-sail propulsion for most of its journey. It uses beamed microwave energy for its cutting operations. Rotating, telescoping arms use integrated laser/plasma jet cutter arrays to dig trenches in spiral patterns which will form blocks of material. Cut blocks are sent into a toroidal cloud of material for use in the force field tailoring for automatic module formation.
Journal Article

Forward-Looking Simulation of the GM Front-Wheel Drive Two-Mode Power-Split HEV Using a Dynamic Programming-Informed Equivalent Cost Minimization Strategy

2013-04-08
2013-01-0815
This paper presents a forward-looking simulation (FLS) approach for the front wheel drive (FWD) General Motors Allison Hybrid System II (GM AHS-II). The supervisory control approach is based on a dynamic programming-informed Equivalent Cost Minimization Strategy (ECMS). The controller development uses backward-looking simulations (BLS), which execute quickly by neglecting component transients while assuming exact adherence to a specified drive cycle. Since ECMS sometimes prescribes control strategies with rapid component transients, its efficacy remains unknown until these transients are modeled. This is addressed by porting the ECMS controller to a forward-looking simulation where component transients are modeled in high fidelity. Techniques of implementing the ECMS controller and commanding the various power plants in the GM AHS-II for FLS are discussed.
Technical Paper

Georgia Tech's FutureTruck Split-Parallel Hybrid SUV Design

2003-03-03
2003-01-1270
The Georgia Tech FutureTruck Team has designed a strong parallel split-hybrid powertrain for the model year 2002 Ford Explorer SUV. The modified powertrain uses a Lincoln LS 3.0L, V-6, DOHC, aluminum engine driving the rear axle. An AC-150 from AC Propulsion is coupled to the front wheels through a 3.75:1 Auburn Gear speed reducer. This split-hybrid structure fits well into the Explorer and is to manufacture. The interior cabin has been maintained in a stock configuration by carefully integrating the added instrumentation and electric drive controls into the dash and console. The toque-blending hybrid electric control is designed to be charge sustaining such that the refueling procedures match those of the stock vehicle. When fully operational, this powertrain is expected to yield a net 25% increase in fuel efficiency while lowering emissions without any sacrifice in customer acceptability.
Technical Paper

High-Performance Plug-In Hybrid Electric Vehicle Design Studies and Considerations

2015-04-14
2015-01-1158
This paper presents a detailed design study and associated considerations supporting the development of high-performance plug-in hybrid electric vehicles (PHEVs). Due to increasingly strict governmental regulations and increased consumer demand, automotive manufacturers have been tasked with the reduction of fuel consumption and greenhouse gas (GHG) emissions. PHEV powertrains can provide a needed balance in terms of fuel economy and vehicle performance by exploiting regenerative braking, pure electric vehicle operation, engine load-point shifting, and power-enhancing hybrid traction modes. Thus, properly designed PHEV powertrains can reduce fuel consumption while increasing vehicle utility and performance.
Technical Paper

Industry Experiences with Activity-Based LCA

2000-04-26
2000-01-1464
In this paper, we discuss our experiences with applying an approach called Activity-Based Life-Cycle Assessment (LCA) in industrial settings. In contrast to other Life-Cycle Assessment approaches, we have taken modern cost management practices such as Activity Based Costing as a basis for our approach to environmental impact assessment. The resulting method, Activity-Based LCA, is an extension of Activity-Based Costing as it handles costs, energy consumption and waste generation simultaneously under the presence of uncertainty in a single framework.
Technical Paper

Low Pressure Timed Injection and Control System for the Otto Cycle Engine

1963-01-01
630468
The present use of the carburetor to supply fuel to the Otto cycle engine has placed it in a difficult competitive position with the diesel engine, which has successfully operated with a fuel injection system. The purpose of this study was to consider the feasibility of utilizing a low pressure injection system for the Otto cycle engine. The proposed design is discussed in detail. As the author points out, this system will allow design changes in the engine that would be impossible if the carburetor were retained, and thus considerable improvement in performance and efficiency can be realized for the Otto cycle engine.
Technical Paper

Method for the Exploration of Cause and Effect Links and Derivation of Causal Trees from Accident Reports

1999-04-13
1999-01-1433
The ultimate goal of knowledge-based aircraft design, pilot training and flight operations is to make flight safety an inherent, built-in feature of the flight vehicle, such as its aerodynamics, strength, economics and comfort are. Individual flight accidents and incidents may vary in terms of quantitative characteristics, circumstances, and other external details. However, their cause-and-effect patterns often reveal invariant structure or essential causal chains which may re-occur in the future for the same or other vehicle types. The identification of invariant logical patterns from flight accident reports, time-histories and other data sources is very important for enhancing flight safety at the level of the ‘pilot - vehicle -operational conditions’ system. The objective of this research project was to develop and assess a method for ‘mining’ knowledge of typical cause-and-effect patterns from flight accidents and incidents.
X