Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

A Demonstration of Emissions' Behaviour of Various Handheld Engines Including Investigations on Particulate Matter

2013-10-15
2013-32-9130
To get an overview of the emission situation in the field of small non-road mobile machinery powered by various types of SI engines, the Association for Emissions Control by Catalyst (AECC), together with the Institute for Internal Combustion Engines and Thermodynamics (IVT) of Graz University of Technology, conducted a customized test program. The main goal for this campaign was to derive information regarding the emissions of regulated gaseous components (following European Directive 97/68/EC) as well as particulate matter. With regard to the big variety of different engines that are available on the European and North-American market, the most representative ones had to be chosen. This resulted in a pool of test devices to cover different engine working principles (2-Stroke and 4-Stroke), technological standards (low-cost and professional tools) and different emissions control strategies (advanced combustion and exhaust gas aftertreatment).
Technical Paper

A Priori Analysis of Acoustic Source Terms from Large-Eddy Simulation in Turbulent Pipe Flow

2020-09-30
2020-01-1518
The absence of combustion engine noise pushes increasingly attention to the sound generation from other, even much weaker, sources in the acoustic design of electric vehicles. The present work focusses on the numerical computation of flow induced noise, typically emerging in components of flow guiding devices in electro-mobile applications. The method of Large-Eddy Simulation (LES) represents a powerful technique for capturing most part of the turbulent fluctuating motion, which qualifies this approach as a highly reliable candidate for providing a sufficiently accurate level of description of the flow induced generation of sound. Considering the generic test configuration of turbulent pipe flow, the present study investigates in particular the scope and the limits of incompressible Large-Eddy Simulation in predicting the evolution of turbulent sound sources to be supplied as source terms into the acoustic analogy of Lighthill.
Technical Paper

A Versatile Approach for an ISO26262 Compliant Hardware-Software Interface Definition with Model-Based Development

2015-04-14
2015-01-0148
Increasing demands for safety, security, and certifiability of embedded automotive systems require additional development effort to generate the required evidences that the developed system can be trusted for the application and environment it is intended for. Safety standards such as ISO 26262 for road vehicles have been established to provide guidance during the development of safety-critical systems. The challenge in this context is to provide evidence of consistency, correctness, and completeness of system specifications over different work-products. One of these required work-products is the hardware-software interface (HSI) definition. This work-product is especially important since it defines the interfaces between different technologies. Model-based development (MBD) is a promising approach to support the description of the system under development in a more structured way, thus improving resulting consistency.
Technical Paper

Big Data-Based Driving Pattern Clustering and Evaluation in Combination with Driving Circumstances

2018-04-03
2018-01-1087
Car driver’s behavior and its influence on driving characteristics play an increasing role in the development of modern vehicles, e.g. in view of efficient powertrain control and implementation of driving assistance functions. In addition, knowledge about actual driving style can provide feedback to the driver and support efficient driving or even safety-related measures. Driving patterns are caused not only by the driver, but also influenced by road characteristics, environmental boundary conditions and other traffic participants. Thus, it is necessary to take the driving circumstances into account, when driving patterns are studied. This work proposes a methodology to cluster and evaluate driving patterns under consideration of vehicle-related parameters (e.g. acceleration and jerk) in combination with additional influencing factors, e.g. road style and inclination. Firstly, segmentation of the trip in distance series is performed to generate micro cycles.
Technical Paper

Characterizing a Real-Driving Brake Emissions Sampling System on a Laboratory Test Bed

2023-11-05
2023-01-1875
Brake wear emissions gained significant relevance with the upcoming Euro7 type approval within the European Union for brake emission measurement on the test bed. While the controlled brake test bed approach provides consistent results, real-driving emission (RDE) measurements are needed to better understand actual emission behavior due to varying vehicle and environmental conditions. The EU has already announced its interest in RDE testing. Here we present the results of an RDE brake wear sampling system with minimal thermal impact, where particles are only sampled from one side of the brake disc, characterized on a laboratory sampling system. The investigations aim to validate symmetric particle release and to confirm that doubling the measured RDE results effectively represents the reference emissions on the test bed.
Technical Paper

Evaluation and Modeling of Rotor Position Sensor Characteristics for Electric Traction Motors

2016-04-05
2016-01-1065
Vehicles driven by electric or hybrid technologies have the advantage that a high torque potential can be used from the start, hence the initial vehicle acceleration is higher compared to conventional propulsion concepts [1]. The speed-torque characteristic of electric machines is nearly ideal for the use in automotive applications and electrical machines can be controlled with a high efficiency. The aim of the present work is the examination of different sensor technologies, which are used in such automotive applications to measure the rotor position of electric motors. The project includes the assessment and evaluation of different sensor technologies, e.g. resolver, eddy current sensors and sensors based on magneto-resistive effects. The quality of the sensor angular measurement depends on different parameters, for example misalignment in planar direction, longitudinal direction, tilt angle, temperature, rotational speed and supply voltage.
Technical Paper

Expansion to Higher Efficiency - Experimental Investigations of the Atkinson Cycle in Small Combustion Engines

2015-11-17
2015-32-0809
The enhancement of efficiency will play a more and more important role in the development of future (small) internal combustion engines. In recent years, the Atkinson cycle, realized over the crank drive, has attracted increasing attention. Several OEMs have been doing investigations on this efficiency-increasing principle with in the whole range from small engines up to automotive ones. In previous publications, the authors stated that an indicated efficiency of up to 48% could be reached with an Atkinson cycle-based engine. However, these studies are based on 1D-CFD simulation. To verify the promising simulation results, a prototype engine, based on the Atkinson principle, was designed and experimentally tested. The aim of the present study is to evaluate and validate the (indicated) engine efficiency gained by experimental tests compared to the predicted simulation results. In order to investigate part load behavior, several valve timing strategies were also developed and tested.
Technical Paper

Expansion to Higher Efficiency - Investigations of the Atkinson Cycle in Small Combustion Engines

2012-10-23
2012-32-0059
Small combustion engines can be found in various applications in daily use (e.g. as propulsion of boats, scooters, motorbikes, power-tools, mobile power units, etc.) and have predominated these markets for a long time. Today some upcoming competitive technologies in the field of electrification can be observed and have already shown great technical advances. Therefore, small combustion engines have to keep their present advantages while concurrently minimizing their disadvantages in order to remain the predominant technology in the future. Whereas large combustion engines are most efficient thermal engines, small engines still suffer from significantly lower efficiencies caused by a disadvantageous surface to volume ratio. Thus, the enhancement of efficiency will play a key role in the development of future small combustion engines. One promising possibility to improve efficiency is the use of a longer expansion than compression stroke.
Technical Paper

Experimental Verification and Drivability Investigations of a Turbo Charged 2-Cylinder Motorcycle Engine

2014-11-11
2014-32-0112
There are several reasons for equipping an internal combustion engine with a turbo-charger. The most important motivation for motorcycle use is to increase the power to weight ratio. Focusing on the special boundary conditions of motorcycles, like the wide engine speed range or the extraordinarily high demands on response behavior, automotive downsizing technologies cannot be transferred directly to this field of application. This led to the main question: Is it possible to design a turbo-charged motorcycle engine with satisfactory drivability and response behavior? The layout of the charged motorcycle engine was derived by simulation and had to be verified by experimental investigations. Main components, like the turbo charger or the waste gate control as well as the influence of the increasing back pressure on the combustion, were verified by test bench measurements. Afterwards the operation strategy in general was investigated and applied to the prototype engine.
Technical Paper

High Mileage Emission Deterioration Factors from Euro 6 Positive and Compression Ignition Vehicles

2022-08-30
2022-01-1028
The current European fleet of vehicles is ageing and lifetime mileages are rising proportionally. Consequently, a substantial fraction of the vehicle fleet is currently operating at mileages well beyond current durability legislation (≤ 160,000 km). Emissions inventories and models show substantial increases in emissions with increasing mileage, but knowledge of the effect of emissions control system deterioration at very high mileages is sparse. Emissions testing has been conducted on matched pairs (or more) of diesel and gasoline (and CNG) vehicles, of low and high mileage, supplementing the results with in-house data, in order to explore high mileage emission deterioration factors (DF). The study isolated, as far as possible, the effect of emissions deterioration with mileage, by using nominally identical vehicle models and controlling other variables.
Journal Article

Mass Balancing Measures of a Linkage-Based Extended Expansion Engine

2016-11-08
2016-32-0096
The enhancement of efficiency will play a more and more important role in the development of future (small) internal combustion engines. In recent years, the Atkinson (or Extended Expansion) cycle, realized over the crank drive, attracted increasing attention. Several OEMs have investigated this efficiency-increasing principle in the whole range from small engines up to automotive engines until now. In prior publications, the authors outlined the remarkable efficiency potentials of an Extended Expansion (EE) cycle. However, for an internal combustion engine, a smooth running performance as well as low vibrations and noise emissions are relevant aspects. This is especially true for an Extended Expansion engine realized over the crank drive. Therefore, design measures concerning friction and NVH need to be taken to enable possible series production status. Basically, these measures strongly depend on the reduction of the free mass forces and moments.
Technical Paper

Measuring Brake Wear Particles with a Real-Driving Emissions Sampling System on a Brake Dynamometer

2022-09-19
2022-01-1180
Brake wear particles are recognized as one of the dominant sources of road transport particulate matter emissions and are linked to adverse health effects and environmental impact. The UNECE mandated the Particle Measurement Program to address this issue, by developing a harmonized sampling and measurement methodology for the investigation of brake wear particles on a brake dynamometer (dyno). However, although the brake dyno approach with tightly controlled test conditions offers good reproducibility, a multitude of changing vehicle and surrounding conditions make real-driving emissions measurement a highly relevant task. Here we show two different prototypes for on-road particle measurement with minimal impact of the measurement setup on the emission behavior, tested on a brake dyno.
Technical Paper

Multimethod Concept for Continuous Wear-Analysis of the Piston Group

2018-04-03
2018-01-0839
Friction losses as well as lube oil consumption at the piston group are key factors for future engine downsizing concepts regarding to emissions and consumption. This means an early identification of friction losses and wear is essential within development. The main problem is that the wear assessment is based on long durability tests which are typically performed in a later phase. This may lead to the fact that an early optimized configuration with respect to friction can cause a potential wear problem later in the durability test program. Still ongoing trends in combustion engine engineering lead to both the minimized oil supply in the tribocontact piston bore interface and improved wear resistance. One is forced to the conclusion that understanding and quantifying wear will be a key driver for the future engine development process. The aim is a holistic concept that combines different methods to investigate wear and furthermore its combination with friction loss studies.
Journal Article

Reed Valve CFD Simulation of a 2-Stroke Engine Using a 2D Model Including the Complete Engine Geometry

2010-09-28
2010-32-0015
CFD has been widely used to predict the flow behavior inside 2-stroke engines over the past twenty years. Usually a mass flow profile or a simple 0D model is used for the inlet boundary condition, which replaces the complete intake geometry, such as reed valve, throttle, and air box geometries. For a CFD simulation which takes into account the exact reed valve geometry, a simulation of all above mentioned domains is required, as these domains are coupled together and thus interact. As the high speed of the engine affects the opening dynamic and closure of the reed valve, the transient data from the crank case volume and the section upstream the reed valve have an important influence on the reed petal dynamic and therewith on the sucked fresh air mass of the engine. This paper covers a methodology for the transient CFD simulation of the reed petals of a 2-stroke engine by using a 2D model.
Journal Article

Sulfur Poisoning of a NOx Storage Catalyst - A Comprehensive Modelling Approach

2016-04-05
2016-01-0964
This paper describes the development of a 0-D-sulfur poisoning model for a NOx storage catalyst (NSC). The model was developed and calibrated using findings and data obtained from a passenger car diesel engine used on testbed. Based on an empirical approach, the developed model is able to predict not only the lower sulfur adsorption with increasing temperature and therefore the higher SOx (SO2 and SO3) slip after NSC, but also the sulfur saturation with increasing sulfur loading, resulting in a decrease of the sulfur adsorption rate with ongoing sulfation. Furthermore, the 0-D sulfur poisoning model was integrated into an existing 1-D NOx storage catalyst kinetic model. The combination of the two models results in an “EAS Model” (exhaust aftertreatment system) able to predict the deterioration of NOx-storage in a NSC with increasing sulfation level, exhibiting higher NOx-emissions after the NSC once it is poisoned.
Technical Paper

Transient Numerical Analysis of a Dissipative Expansion Chamber Muffler

2024-06-12
2024-01-2935
Expansion chamber mufflers are commonly applied to reduce noise in HVAC. Dissipative materials, such as microperforated plates (MPPs), are often applied to achieve a more broadband mitigation effect. Such mufflers are typically characterized in the frequency domain, assuming time-harmonic excitation. From a computational point of view, transient analyses are more challenging. A transformation of the equivalent fluid model or impedance boundary conditions into the time domain induces convolution integrals. We apply the recently proposed finite element formulation of a time domain equivalent fluid (TDEF) model to simulate the transient response of dissipative acoustic media to arbitrary unsteady excitation. As most time domain approaches, the formulation relies on approximating the frequency-dependent equivalent fluid parameters by a sum of rational functions composed of real-valued or complex-conjugated poles.
X