Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

360° vs. 270° vs. 180°: The Difference of Balancing a 2 Cylinder Inline Engine: Design, Simulation, Comparative Measurements

2012-10-23
2012-32-0106
Beside the automotive industry, where 2-cylinder inline engines are catching attention again, twin-cylinder configurations are quite usual in the small engine world. From stationary engines and range-extender use to small motorcycles up to big cruisers and K-Cars this engine architecture is used in many types of applications. Because of very good overall packaging, performance characteristics and not least the possibility of parts-commonality with 4-cylinder engines nearly every motorcycle manufacturer provides an inline twin in its model range. Especially for motorcycle applications where generally the engine is a rigid member of the frame and vibrations can be transferred directly to the rider an appropriate balancing system is required.
Technical Paper

3d-Elastohydrodynamic Simulation Model for Structure-Borne Noise Analyses of a DI Diesel Engine

2016-06-15
2016-01-1854
The present article is concerned with the investigation of the engine noise induced by the piston slap of an actual passenger car Diesel engine. The focus is put on the coherence of piston secondary movement, impact of the piston on the cylinder liner, generated structure-borne noise excitation of the engine structure and the occurring acceleration on the engine surface. Additionally, the influence of a varying piston-pin offset and piston clearance is evaluated. The analyses are conducted using an elastohydrodynamic multi-body simulation model, taking into account geometry, stiffness and mass information of the single components as well as considering elastic and hydrodynamic behavior of the piston-liner contact. A detailed description of the simulation model will be introduced in the article. The obtained results illustrate the piston secondary motion and the related structure-borne noise on the engine surface for several piston-pin offsets and piston clearances.
Technical Paper

A 3D Linear Acoustic Network Representation of Mufflers with Perforated Elements and Sound Absorptive Material

2017-06-05
2017-01-1789
The acoustics of automotive intake and exhaust systems is typically modeled using linear acoustics or gas-dynamics simulation. These approaches are preferred during basic sound design in the early development stages due to their computational efficiency compared to complex 3D CFD and FEM solutions. The linear acoustic method reduces the component being modelled to an equivalent acoustic two-port transfer matrix which describes the acoustic characteristic of the muffler. Recently this method was used to create more detailed and more accurate models based on a network of 3D cells. As the typical automotive muffler includes perforated elements and sound absorptive material, this paper demonstrates the extension of the 3D linear acoustic network description of a muffler to include the aforementioned elements. The proposed method was then validated against experimental results from muffler systems with perforated elements and sound absorptive material.
Technical Paper

A Comprehensive Study on Different System Level Engine Simulation Models

2013-04-08
2013-01-1116
Engine simulation can be performed using model approaches of different depths in capturing physical effects. The present paper presents a comprehensive comparison study on seven different engine models. The models range from transient 1D cycle resolved approaches to steady-state non-dimensional maps. The models are discussed in the light of key features, amount and kind of required input data, model calibration effort and predictability and application areas. The computational performance of the different models and their capabilities to capture different transient effects is investigated together with a vehicle model under real-life driving conditions. In the trade-off field of model predictability and computational performance an innovative approach on crank-angle resolved cylinder modeling turned out to be most beneficial.
Technical Paper

A Computational Study on the Impact of Cycle-to-Cycle Combustion Fluctuations on Fuel Consumption and Knock in Steady-State and Drivecycle Operation

2013-09-08
2013-24-0030
In spark-ignition engines, fluctuations of the in-cylinder pressure trace and the apparent rate of heat release are usually observed from one cycle to another. These Cycle-to-Cycle Variations (CCV) are affected by the early flame development and the subsequent flame front propagation. The CCV are responsible for engine performance (e.g. fuel consumption) and the knock behavior. The occurrence of the phenomena is unpredictable and the stochastic nature offers challenges in the optimization of engine control strategies. In the present work, CCV are analyzed in terms of their impact on the engine knock behavior and the related efficiency. Target is to estimate the possible fuel consumption savings in steady-state operation and in the drivecycle, when CCV are reduced. Since CCV are immanent on real engines, such a study can only be done by means of simulation.
Technical Paper

A Correlation Methodology between AVL Mean Value Engine Model and Measurements with Concept Analysis of Mean Value Representation for Engine Transient Tests

2017-09-04
2017-24-0053
The use of state of the art simulation tools for effective front-loading of the calibration process is essential to support the additional efforts required by the new Real Driving Emission (RDE) legislation. The process needs a critical model validation where the correlation in dynamic conditions is used as a preliminary insight into the bounds of the representation domain of engine mean values. This paper focuses on the methodologies for correlating dynamic simulations with emissions data measured during dynamic vehicle operation (fundamental engine parameters and gaseous emissions) obtained using dedicated instrumentation on a diesel vehicle, with a particular attention for oxides of nitrogen NOx specie. This correlation is performed using simulated tests run within AVL’s mean value engine and engine aftertreatment (EAS) model MoBEO (Model Based Engine Optimization).
Technical Paper

A Cross Domain Co-Simulation Platform for the Efficient Analysis of Mechatronic Systems

2010-04-12
2010-01-0239
Efficient integration of mechanics and microelectronics components is nowadays a must within the automotive industry in order to minimize integration risks and support optimization of the entire system. We propose in this work a cross domain co-simulation platform for the efficient analysis of mechatronic systems. The interfacing of two state-of-the-art simulation platforms provides a direct link between the two domains at an early development stage, thus enabling the validation and optimization of the system already during modeling phase. The proposed cross-domain co-simulation is used within our TEODACS project for the analysis of the FlexRay technology. We illustrate using a drive-by-wire use case how the different architecture choices may influence the system.
Technical Paper

A Demonstration of Emissions' Behaviour of Various Handheld Engines Including Investigations on Particulate Matter

2013-10-15
2013-32-9130
To get an overview of the emission situation in the field of small non-road mobile machinery powered by various types of SI engines, the Association for Emissions Control by Catalyst (AECC), together with the Institute for Internal Combustion Engines and Thermodynamics (IVT) of Graz University of Technology, conducted a customized test program. The main goal for this campaign was to derive information regarding the emissions of regulated gaseous components (following European Directive 97/68/EC) as well as particulate matter. With regard to the big variety of different engines that are available on the European and North-American market, the most representative ones had to be chosen. This resulted in a pool of test devices to cover different engine working principles (2-Stroke and 4-Stroke), technological standards (low-cost and professional tools) and different emissions control strategies (advanced combustion and exhaust gas aftertreatment).
Technical Paper

A Demonstration of the Emission Behaviour of 50 cm3 Mopeds in Europe Including Unregulated Components and Particulate Matter

2011-11-08
2011-32-0572
The European emission legislation for two-wheeler vehicles driven by engines of ≤ 50 cm₃ is continuously developing. One of the most important issues in the near future will be the finalization of the European Commission's proposals for future steps in the emissions regulations as well as the verification of the impacts of current standards on the market. To have a basis for the discussion about these topics, the Association for Emissions Control by Catalyst (AECC) with the Institute for Internal Combustion Engines and Thermodynamics of Graz University of Technology (IVT) carried out an extensive test program to show the actual emission situation of state-of-the-art mopeds including mass and number of particulate matter as well as unregulated gaseous components. One of the main goals of these tests was to measure exhaust emissions without any modifications to the engines of standard production vehicles available on the European market.
Technical Paper

A History-Based Load Requirement Prediction Algorithm, for Predictive Hybrid- and Thermal Operation Strategies

2016-04-05
2016-01-1238
In hybrid electric vehicles (HEV), the operation strategy strongly influences the available system power, as well as local exhaust emissions. Predictive operation strategies rely on knowledge of future traction-force demands. This predicted information can be used to balance the battery’s state of charge or the engine’s thermal system in their legal operation limits and can reduce peak loads. Assuming the air and rolling drag-coefficient to be constant, the desired vehicle velocity, vehicle-mass and longitudinal driving resistances determine the vehicle’s traction-force demand. In this paper, a novel methodology, combining a history-based prediction algorithm for estimating future traction-force demands with the parameter identification of road grade angle and vehicle mass, is proposed. It is solely based on a route-history database and internal vehicle data, available on its on-board communication and measuring systems.
Journal Article

A Hybrid Development Process for NVH Optimization and Sound Engineering Considering the Future Pass-by Homologation Demands

2016-11-08
2016-32-0043
Beside hard facts as performance, emissions and fuel consumption especially the brand specific attributes such as styling and sound are very emotional, unique selling prepositions. To develop these emotional characters, within the given boundary conditions of the future pass-by regulation, it is necessary to define them at the very beginning of the project and to follow a consequent development process. The following paper shows examples of motorcycle NVH development work on noise cleaning and sound engineering using a hybrid development process combining front loading, simulation and testing. One of the discussed solutions is the investigation of a piston pin offset in combination with a crankshaft offset for the reduction of friction. The optimization of piston slap noise as a result of the piston secondary motion was performed by simulation. As another example a simulation based development was performed for the exhaust system layout.
Journal Article

A Miniature Catalytic Stripper for Particles Less Than 23 Nanometers

2013-04-08
2013-01-1570
The European Emissions Stage 5b standard for diesel passenger cars regulates particulate matter to 0.0045 g/km and non-volatile part/km greater than 23 nm size to 6.0x10₁₁ as determined by the PMP procedure that uses a heated evaporation tube to remove semi-volatile material. Measurement artifacts associated with the evaporation tube technique prevents reliable extension of the method to a lower size range. Catalytic stripper (CS) technology removes possible sources of these artifacts by effectively removing all hydrocarbons and sulfuric acid in the gas phase in order to avoid any chemical reactions or re-nucleation that may cause measurement complications. The performance of a miniature CS was evaluated and experimental results showed solid particle penetration was 50% at 10.5 nm. The sulfate storage capacity integrated into the CS enabled it to chemically remove sulfuric acid vapor rather than rely on dilution to prevent nucleation.
Journal Article

A Model-Based Configuration Approach for Automotive Real-Time Operating Systems

2015-04-14
2015-01-0183
Automotive embedded systems have become very complex, are strongly integrated, and the safety-criticality and real-time constraints of these systems raise new challenges. The OSEK/VDX standard provides an open-ended architecture for distributed real-time capable units in vehicles. This is supported by the OSEK Implementation Language (OIL), a language aiming at specifying the configuration of these real-time operating systems. The challenge, however, is to ensure consistency of the concept constraints and configurations along the entire product development. The contribution of this paper is to bridge the existing gap between model-driven systems engineering and software engineering for automotive real-time operating systems (RTOS). For this purpose a bidirectional tool bridge has been established based on OSEK OIL exchange format files.
Journal Article

A New Approach for the Reduction of Aerodynamic Drag of Long-Distance Transportation Vehicles

2013-09-24
2013-01-2414
The optimization of aerodynamic drag represents an important research area for the fuel consumption reduction of heavy duty commercial vehicles. Today's design of tractor-trailers is significantly influenced by legal conditions regarding the vehicle dimensions and the provision of a maximum transportation volume. These boundary conditions lead to brick-shaped trailer outer geometries, especially at the rear ends. That is the reason why the investigations of aerodynamic optimization of commercial vehicle trailers are predominantly restricted to detail measures up to now. The present publication treats the aerodynamic characteristics of general modifications on the outer contour of long-distance haulage trailers in regard of reducing the drag resistance and, thus, potentially also the fuel consumption in highway traffic. A new approach for the realization of a variable outer contour of trailers provides the possibility to adjust the rear end to an aerodynamically optimized shape.
Technical Paper

A New Approach to Occupant Simulation Through the Coupling of PC-Crash and MADYMO

1999-03-01
1999-01-0444
During recent years the accident simulation program PC-Crash was developed. This software simulates vehicle movement before, during and after the impact, using 3D vehicle and scene models. When reconstructing car accidents, quite often questions arise regarding occupant movement and loading. Especially important is the influence of different types of restraint systems on the occupant. MADYMO® is a software tool which was developed by TNO in the Netherlands and which is well known in the automotive industry for the simulation of occupant movement. It allows the simulation of all kinds of modern restraint systems such as airbags and seatbelts with and without pretensioners. As the software is used in the automotive industry quite extensively, a huge validated database of dummy and human models is available. Since MADYMO® demands the setup of quite complicated input files, its use normally requires a high level of expertise.
Technical Paper

A New Approach to an Adaptive and Predictive Operation Strategy for PHEVs

2015-04-14
2015-01-1222
These days a new generation of hybrid electric vehicles (HEV) are penetrating the global vehicle market - the plug-in hybrid electric vehicles (PHEVs). Compared to conventional HEVs, PHEVs have additional significant potential. They are able to improve fuel efficiency and reduce local emissions due to higher battery capacities, and they can be recharged from external outlets. Energy management has a major impact on the PHEVs performance. In this publication, an innovative operation strategy for PHEVs is presented. This is due to the fact that both increasing fuel efficiency and enhancing the vehicle's longitudinal performance requires a fine balance between the consumption of fossil and electric energy. The new operation strategy combines advanced predictive and adaptive algorithms. In contrast to the charge-sustaining strategy of HEVs, the charge-depleting mode for PHEVs is more appropriate.
Technical Paper

A Scalable Simulation Method for the Assessment of Cycle-to-Cycle Combustion Variations and their impact on Fuel Consumption and Knock

2015-01-14
2015-26-0213
In the present work, a scalable simulation methodology is presented that enables the assessment of the impact of SI-engine cycle-to-cycle combustion variations on fuel consumption and hence CO2 emissions on three different levels of modeling depth: in-cylinder, steady-state engine and transient engine and vehicle simulation. On the detailed engine combustion chamber level, a 3D-CFD approach is used to study the impact of the turbulent in-cylinder flow on the cycle-resolved flame propagation characteristics. On engine level, cycle-to-cycle combustion variations are assessed regarding their impact on indicated mean effective pressure, aiming at estimating the possible fuel consumption savings when cyclic variations are minimized. Finally, on the vehicle system level, a combined real-time engine approach with crank-angle resolved cylinder is used to assess the potential fuel consumption savings for different vehicle drivecycle conditions.
Technical Paper

A Simulation Approach for Vehicle Life-Time Thermal Analysis Applied to a HEV Battery System

2016-04-05
2016-01-0201
In order to meet current and future emission and CO2 targets, an efficient vehicle thermal management system is one of the key factors in conventional as well as in electrified powertrains. Global vehicle simulation is already a well-established tool to support the vehicle development process. In contrast to conventional vehicles, electrified powertrains offer an additional challenge to the thermal conditioning: the durability of E-components is not only influenced by temperature peaks but also by the duration and amplitude of temperature swings as well as temperature gradients within the components during their lifetime. Keeping all components always at the preferred lowest temperature level to avoid ageing under any conditions (driving, parking, etc.) will result in very high energy consumption which is in contradiction to the efficiency targets.
Technical Paper

A Smart Icing Detection System for Any Location on the Outer Aircraft Surface

2019-06-10
2019-01-1931
Given approximately one million small and light aircraft in operation worldwide, icing detection and icing quantification of in-flight icing are still an open research topic. Despite technical means are available to de-ice on ground, there is a lack of a suitable control system based on sensor data to de-ice while the aircraft is airborne. Most often, it is still task of the pilot to visually inspect the icing status of the airfoil and/or other critical parts of the aircraft such as engine air intakes, which distracts the flight crew from flying the aircraft especially in IMC conditions. Based on preliminary simulation and tests in 2014 in a collaborative research project lasting from 2015 until 2018, the technology of energy self-sustaining, wireless, self-adhesive smart sensors for industrial sensing in an aerodynamically critical environment (i.e. wind turbines) was further investigated to fulfil general aviation requirements.
Technical Paper

A Software Tool for Noise Quality and Brand Sound Development

2001-04-30
2001-01-1573
For noise quality and brand sound design of passenger cars a unique software tool is currently used by our clients world-wide to evaluate and optimise the interior noise quality and brand sound aspects of passenger cars on an objective basis. The software tools AVL-VOICE and AVL-COMFORT are designed for the objective analysis of interior noise quality, for benchmarking, for the definition of noise quality targets and most important for effective vehicle sound engineering. With this tool, the target orientated implementation of the required interior noise quality or brand sound by predictable hardware modifications into passenger cars - for tailor made joy of driving - becomes feasible. The use of this tools is drastically reducing vehicle evaluation time and sound engineering effort when compared with traditional jury subjective evaluation methods and standard acoustic NVH optimisation procedures.
X