Refine Your Search

Topic

Author

Search Results

Technical Paper

A New RISC Microcontroller with On-Chip FPU to Introduce Adaptive Control into Powertrain Management

1999-03-01
1999-01-0865
Gasoline engine control continues to become more sophisticated and so the amount of software has reached 10 to 20 times that of early control systems. By changing the embedded microcomputer from 8bit CISC (Complex Instruction Set Computer) to 32bit RISC (Reduced Instruction Set Computer), processing performance has been improved 100 times. This paper evaluates quantitative performance of the RISC CPU having a FPU (Floating Point Processing Unit) and describes an example application to adaptive control.
Technical Paper

A State Adaptive Control Algorism for Vehicle Suspensions

1988-11-01
881769
This paper describes a state adaptive control method for vehicle suspensions proposed by Hitachi, Ltd. The objective of the control is to improve riding comfort and driving stability in reaction to road iregularities, exterior wind forces, and changes in vehicle loads as well as in reaction to inertial changes during cornering, breaking, and accelerating. The objective is attained by making considerable use of the relative displacement data between the body and the suspension. The state adaptive control system includes four shock absorbers whose damping forces can be tuned in three stages, four height sensors which measure the relative displacement, a vehicle speed sensor, and a microcomputer which decides the optimal damper stage. The validity of the proposed control method is shown through computer simulations and actual driving experiments. Vertical acceleration is reduced by about 55 % by switching from the soft damper to the hard damper in a computer simulation.
Technical Paper

A Totally Integrated Vehicle Electronic Control System

1988-11-01
881772
A totally integrated vehicle electronic control system is described, which optimizes vehicle performance through use of electronics. The system implements efficient coordination of functions of the engine, drive-train, brakes, steering, and suspension control subsystems to give a smoother ride, better handling and greater safety. The principles of the system are based on control and stability augmentation strategies. Each subsystem has two observers which control the force of the actuators according to the vehicle dynamics. The system features a driver support system which allows the average driver to employ the full performance potential of the vehicle in exceptional situations, and an artificial response control system to ensure optimum response and comfort. Application of the system allows the driver to experience a new level of performance and a marked improvement in handling quality and ride comfort.
Technical Paper

A Virtual ECU and Its Application to Control System Analysis - Power Window System Demonstration

2016-04-05
2016-01-0022
A virtual power window control system was built in order to look into and demonstrate applications of microcontroller models. A virtual ECU simulated microcontroller hardware operations. The microcontroller program, which was written in binary digital codes, was executed step-by-step as the virtual ECU simulation went on. Thus, production-ready codes of ECUs are of primary interest in this research. The mechanical system of the power window, the DC motor to lift the window glass, the H-bridge MOSFET drivers, and the current sensing circuit to detect window locking are also modeled. This means that the hardware system of the control system was precisely modeled in terms of mechanical and circuit components. By integrating these models into continuous and discrete co-simulation, the power window control system was analyzed in detail from the microscopic command execution of the microcontroller to the macroscopic motion of the window mechanism altogether.
Technical Paper

An Accurate Torque-based Engine Control by Learning Correlation between Torque and Throttle Position

2008-04-14
2008-01-1015
In recent years, integrated vehicle control systems have been developed to improve fuel economy and safety. As a result, engine control is shifting to torque-based systems for throttle / fuel / ignition control, to realize an engine torque demand from the system. This paper describes torque-based engine control technologies for SI (Spark Ignition) engine to improve torque control accuracy using a feedback control algorithm and an airflow sensor.
Technical Paper

Application of Model Checking to Automotive Control Software with Slicing Technique

2013-04-08
2013-01-0436
To detect difficult-to-find defects in automotive control systems, we have proposed a modeling method with a program slicing technique. In this method, a verifier adjusts the boundaries of source code to be extracted on a variable dependence graph, in a kind of data flow. We have developed software tools for this method and achieved a 35% decrease in total verification time on model checking. This paper provides some consideration on effective cases of the method from verification practices. There are two types of malfunction causes: one is the timing of processes (race conditions), and the other is complex logics. Each type requires different elements in external environment models. Furthermore, we propose regression verification based on the modeling method above, to further reduce verification time on model checking. The paper outlines tool extensions needed to realize regression verification.
Journal Article

Automatic Curve Deceleration System Using Enhanced ACC with Navigation System

2008-04-14
2008-01-0922
We have developed a system for automatic deceleration upon entering curves to prevent collisions on tight curves on high-ways. The navigation system is used to determine safe speed negotiating the curve, defined as a speed that will keep lateral acceleration within a settled value. The navigation system sends the curve radius to a controller, which calculates the safe speed for the curve. The controller then sends the speed command to the ACC system, which adjusts the vehicle speed. One of the important features in this system is the estimation of the vehicle position, in terms of its distance from the curve entrance. Navigation systems have a certain amount of dispersion in positional accuracy. A front camera is used in our system to decrease this dispersion. This camera detects lane markers (white lines, raised pavement markers, etc.) using our line recognition technologies1).
Technical Paper

CAN Security: Cost-Effective Intrusion Detection for Real-Time Control Systems

2014-04-01
2014-01-0340
In-vehicle networks are generally used for computerized control and connecting information technology devices in cars. However, increasing connectivity also increases security risks. “Spoofing attacks”, in which an adversary infiltrates the controller area network (CAN) with malicious data and makes the car behave abnormally, have been reported. Therefore, countermeasures against this type of attack are needed. Modifying legacy electronic control units (ECUs) will affect development costs and reliability because in-vehicle networks have already been developed for most vehicles. Current countermeasures, such as authentication, require modification of legacy ECUs. On the other hand, anomaly detection methods may result in misdetection due to the difficulty in setting an appropriate threshold. Evaluating a reception cycle of data can be used to simply detect spoofing attacks. However, this may result in false detection due to fluctuation in the data reception cycle in the CAN.
Technical Paper

CPU Model-based Hardware/Software Co-design for Real-Time Embedded Control Systems

2007-04-16
2007-01-0776
This paper proposes a new development method for highly reliable real-time embedded control systems using a CPU model-based hardware/software co-simulation. We take an approach that allows the full simulation of the virtual mechanical control system including CPU and object code level software. In this paper, Renesas SH-2A microcontroller model was developed on CoMET™ platform from VaST Systems Technology. A ETC (Electronic Throttle Control) system and engine control system were chosen to prove this concept. The ETB (Electronic Throttle Body) model on Saber® simulator from Synopsys® or engine model on MATLAB®/Simulink® simulator from MathWorks can be simulated with the SH-2A model. To help the system design, debug and evaluation, we developed an integrated behavior analyzer, which can display CPU behavior graphically during the simulation without affecting the simulation result, such as task level CPU load, interrupt statistics, software variable transition chart, and so on.
Technical Paper

Cold Start HC Reduction with Feedback Control Using a Crank Angle Sensor

2008-04-14
2008-01-1010
Emission regulations continue to be strengthened, and it is important to decrease cold start hydrocarbon concentrations in order to meet them, now and in the future. The HC concentration in engine exhaust gas can be reduced by optimizing the air-fuel ratio. However, a conventional air-fuel ratio feedback control does not operate for the first ten seconds after the engine has started because the air-fuel ratio sensor has not yet been activated. In this paper, we report on a study to optimize the air-fuel ratio using a crank angle sensor until the air-fuel ratio sensor has been activated. A difference in fuel properties was used as a typical disturbance factor. The control was applied to both a direct-injection engine (DI) and a port-injection engine (MPI). It was evaluated for two fuel types: one which evaporates easily and one which does not. The experimental results show the air-fuel ratio is optimized for both types of fuel.
Technical Paper

Computer-Aided Calibration Methodology for Spark Advance Control Using Engine Cycle Simulation and Polynomial Regression Analysis

2007-10-29
2007-01-4023
The increasing number of controllable parameters in modern engine systems has led to increasingly complicated and enlarged engine control software. This in turn has created dramatic increases in software development time and cost. Model-based control design seems to be an effective way to reduce development time and costs and also to enable engineers to understand the complex relationship between the many controllable parameters and engine performance. In the present study, we have developed model-based methodologies for the engine calibration process, employing engine cycle simulation and regression analysis. The reliability of the proposed method was investigated by validating the regression model predictions with measured data.
Technical Paper

Controller Grid: Real-Time Load Balancing of Distributed Embedded Systems

2007-04-16
2007-01-1615
The concept of a “controller grid”, which makes effective use of computational resources distributed on a network while guaranteeing real-time operation, is proposed and applied to realize highly advanced control. It facilitates the total optimization of a plant control and achieves the high efficiency that is not acquired by individual plant optimization. To realize this concept, migration of a control task customized to be executed on one particular microcontroller to another microcontroller is necessary while strictly observing the required response time. Two techniques to meet this requirement are proposed: “task migration” for a control system and “real-time guaranteed scheduling of task migration and execution”. The effectiveness of the controller grid is assessed by applying it in experiments with electronic-throttle-body (ETB) advanced control.
Technical Paper

Development of Breath-Alcohol-Detection System

2016-04-05
2016-01-1498
The problem of high fatal accident rates due to drunk driving persists, and must be reduced. This paper reports on a prototype system mounted on a car mock-up and a prototype portable system that enables the checking of the drivers’ sobriety using a breath-alcohol sensor. The sensor unit consists of a water-vapor-sensor and three semiconductor gas sensors for ethanol, acetaldehyde, and hydrogen. One of the systems’ features is that they can detect water vapor from human-exhaled breath to prevent false detection with fake gases. Each gas concentration was calculated by applying an algorithm based on a differential evolution method. To quickly detect the water vapor in exhaled breath, we applied an AC voltage between the two electrodes of the breath-water-vapor sensor and used our alcohol-detection algorithm. The ethanol level was automatically calculated from the three gas sensors as soon as the water vapor was detected.
Technical Paper

Development of Predictive Powertrain State Switching Control for Eco-Saving ACC

2017-03-28
2017-01-0024
In recent years, improvement of in-use fuel economy is required with tightening of exhaust emission regulation. We assume that one of the most effective solutions is ACC (Adaptive Cruise Control), which can control a powertrain accurately more than a driver. We have been developing a fuel saving ADAS (Advanced Driver Assistance System) application named “Sailing-ACC”. Sailing-ACC system uses sailing stop technology which stops engine fuel injection, and disengages a clutch coupling a transmission when a vehicle does not need acceleration torque. This system has a potential to greatly improve fuel efficiency. In this paper, we present a predictive powertrain state switching algorithm using external information (route information, preceding vehicle information). This algorithm calculates appropriate switching timing between a sailing stop mode and an acceleration mode to generate a “pulse-and-glide” pattern.
Technical Paper

Development of Smooth Shift Control System with Output Torque Estimation

1995-02-01
950900
Most automatic transmissions are controlled in compliance with a predetermined program. Transient control during gear shift is also carried out according to a predetermined process. In this method a lot of labor is required to tune data tables. So we developed a tuning free system by feedback control using torque estimation technology and the experimental result is reported. Torque fluctuation during shift is detected and fed back to compare the torque reference, which is generated from the estimated torque itself. The engine torque is decreased by means of retarding the ignition spark advance, according to the comparison deviation. As a consequence of the feedback, the transient torque control is carried out without any tuning trouble, and better than usual torque fluctuation is obtained.
Technical Paper

Development of a Combined Battery System for Electric Vehicles with Battery Lifespan Enhancements

2018-04-03
2018-01-0448
We propose a combined battery system (CBS) for low cost electric vehicles (EVs) to enhance battery life. The EVs popularly called as Neighborhood Electric Vehicle or Low-Speed-Electric-Vehicle are spreading in developing countries. Conventionally the EVs batteries consist of high energy density cells, and we call it as energy cells (EC). A major issue with the EVs is high operational costs mainly due to high battery cost and short lifespan of the ECs. In this study, we develop a CBS consisting of a combination of following two kinds of batteries: i) EC which is the main energy source for the EV, and ii) a battery having high power density also called as power cells (PC) which is more suitable to bear high charge-discharge currents. The key feature of the proposed system is to minimize the size of additional battery by using our high power lithium ion battery. We performed experiments to estimate EC life for several capacity values of the PC.
Technical Paper

Development of a Three-Dimensional Bird's-eye View Map Drawing Technique for Car Navigation Systems

1998-02-23
980605
In this paper, a newly developed three-dimensional (3D) bird's-eye view map drawing technique for car navigation systems is described. Conventional navigation systems give pseudo-perspective views which can not express ruggedness like hills and valleys. Our newly developed navigation system can display undulation of the land from viewpoints above and behind the current position, so that ups and downs of roads along with the driver's destination can be seen easily. The 3D-road map is not only effective during navigation but also during route planning, because it assists in searching for fine views before travel. In order to achieve the 3D-map view, we developed graphics software libraries, which work on a 32-bit RISC processor and on a low-cost graphics accelerator LSI with texture mapping capability. The graphics software libraries are constructed with three stages, the perspective projection stage, visible-surface determination stage, and rendering stage.
Technical Paper

Development of an On-Board Class A Local Area Network System

1992-02-01
920229
The growing number of electronic components used in automobiles lately has given rise to problems concerning the increasing number, size and weight of the wiring harnesses. As one approach to resolving these problems, the authors proposed a multiplex method based on the direction of signal flow in 1988 (SAE880589). However, the need to reduce the number of wiring harnesses circuits further made it necessary to develop a more sophisticated system. This paper presents an on-board Class A local area network (LAN) system that overcomes the problems in conventional multiplexing systems through the use of a master-slave configuration, a polling selection method and a system that integrates of electronic circuits with switch modules.
Technical Paper

Diagnostic Coverage Evaluation Method for Analog Circuits to Comply with Functional Safety Standards

2015-04-14
2015-01-0267
The ISO 26262 is a functional safety standard for road vehicles. The standard requires manufacturers to conduct quantitative assessment of the diagnostic coverage (DC) of products. The DC is defined as the percentage of failure probability covered by safety mechanisms. However, DC evaluation methods for drift faults, in which the change in element values is not constant, have not been discussed. In this paper, we propose a DC evaluation method for analog circuits with drift faults. With this method, we first parameterize the effect of drift faults onto a bounded region then split the region into safe fault, hazardous detectable fault, and hazardous undetectable fault regions. We evaluate the classification rate distribution by the area ratios of these regions.
Technical Paper

Doppler Radar Speed Sensor for Anti-Skid Control System

1978-02-01
780857
A 24 GHz doppler speed sensor for skid controls has been developed. The microwave sensor is designed using both waveguide and thin-film technologies and assembled into a small integrated unit measuring 27 x 10 x 9 mm. The radar unit and the control circuitry are housed in a waterproof module of 94 x 140 x 78 mm. Part of the casing forms a horn antenna, which radiates a vertically polarized beam incident at 45° on the road surface, when mounted on the vehicle. The error in speed measuring is usually less than 10 percent.
X